68 research outputs found

    Complete Set of Elastic Moduli of a Spin-Crossover Solid: Spin-State Dependence and Mechanical Actuation

    Get PDF
    Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron Xray diffraction and nuclear inelastic scattering measurements, we assessed the effective macroscopic bulk modulus (11.5 ± 2.0 GPa), Young’s modulus (10.9 ± 1.0 GPa) and Poisson’s ratio (0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl) in its low spin state. Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young’s modulus to 7.1 ± 0.5 GPa, which was also assessed in thin film samples by means of micromechanical measurements. These results are in agreement with the high cooperativity of the spin crossover in this compound and highlight its application potential in terms of recoverable stress (21 ± 1 MPa) and work density (15 ± 6 mJ/cm3)

    BioMEMS pour l'Analyse BiomolĂ©culaire : de l'intĂ©rĂȘt du confinement et de la rĂ©duction d'Ă©chelle pour la quantification directe de biomarqueurs

    No full text
    National audiencePersonalized medicine holds the promise to greatly improve patient well-being and to lower the overall cost of medical care. To make this happen, there is an urge to develop new biosensing platforms for the absolute quantification of biomarkers in liquid biopsies with high sensitivity, specificity, portability and at a low cost. This thesis presents the technological toolbox that I have been developing during the last 10 years at LAAS-CNRS to try and provide new molecular analysis devices. More specifically, I propose solutions that take advantage of the size reduction inherent to bioMEMS: nanofluidics-embedded biosensors for kinetic study of molecular interactions, resonant MEMS biosensors for label free detection, and porous silicon membranes for on-chip sample preparation based on filtering and ion concentration polarization.Afin de permettre l’avĂšnement de la mĂ©decine personnalisĂ©e et les promesses qui l’accompagnent en terme notamment d’amĂ©lioration de la prise en charge des patients et de baisse des coĂ»ts des soins mĂ©dicaux, il est nĂ©cessaire de dĂ©velopper de nouveaux dispositifs de dosage molĂ©culaire permettant de dĂ©mocratiser les analyses Ă  partir de prĂ©lĂšvements non-invasifs (biopsies liquides).Les technologies issues de la microĂ©lectronique ont fait naitre une grande variĂ©tĂ© de biocapteurs, sous la forme de dispositifs Ă  haut degrĂ© d’intĂ©gration offrant des avantages indĂ©niables par rapport aux techniques d’analyses molĂ©culaires classiques : dĂ©tection sans marquage, quantification directe des biomolĂ©cules, prĂ©paration d’échantillon minimale et rendu des rĂ©sultats accĂ©lĂ©rĂ©. Ce sont prĂ©cisĂ©ment ces avantages, liĂ©s Ă  une technologies potentiellement bas coĂ»t, multiplexe, et portable qui entretiennent la promesse d’avoir accĂšs Ă  des analyses routiniĂšres au chevet du patient, calquĂ©e sur le modĂšle de rĂ©ussite des appareils de mesure du glucose pour les personnes diabĂ©tiques.Mes activitĂ©s de recherche conduites au LAAS ces 10 derniĂšres annĂ©es sont axĂ©es sur l’utilisation des microtechnologies pour l’analyse molĂ©culaire en traitant les diffĂ©rentes composantes d’un biocapteur : dĂ©veloppement de moyens de transduction, de stratĂ©gies de biofonctionnalisation et outils pour la prĂ©paration d’échantillon. Plus spĂ©cifiquement, mes travaux visent Ă  tirer parti de la rĂ©duction de taille et du confinement spatial inhĂ©rents aux bioMEMS : plateforme nanofluidique pour l'Ă©tude cinĂ©tique d’interactions molĂ©culaires, intĂ©gration de membranes de silicium poreux dans des systĂšmes fluidiques planaires pour la rĂ©alisation d’étapes prĂ©-analytiques sur puce, et recours aux MEMS rĂ©sonants pour la dĂ©tection sans marquage

    Bioplume : a MEMS-based picoliter droplet dispenser with electrospotting means for patterning surfaces at the micro- and the nanometer scales

    No full text
    The interest in patterning surfaces with micro- and nanometer resolutions has been growing fast in recent years, illustrating the tremendous potential of patterning techniques for both fundamental investigations and technological applications in photonics, molecular electronics, and biosensors. Among the various patterning methods, liquid dispensing techniques relying on the use of microcantilevers are very promising for several reasons. The first one is that they permit a direct patterning of the surface with different kinds of materials without any need for prefabricated patterns. Secondly, alignment of the cantilevers with respect to specific regions on the surface is straightforward since the cantilevers themselves can be used as displacement sensors. Moreover, parallel approaches can be developed to meet specific requirements in terms of throughput and fabrication costs. In this thesis we present a liquid spotter (so-called Bioplume) based on the use of silicon microcantilevers. Droplets are formed on the surface by a direct contact method. The fabricated cantilever array is integrated to a closed-loop automated system allowing the control of the droplet homogeneity and the spatial positioning of the microarray. The system relies on the use of force sensors, i.e. piezoresistors, integrated into the cantilevers to adjust the trim and to control the deposition parameters, i.e. contact force and time. By using a specific external loading chip, different liquids can be loaded onto the cantilevers, enabling the parallel deposition of several entities in a single deposition run. Besides, an electrode is incorporated in the channel to allow using electrowetting and electrochemistry. The former is used to actively load the cantilever and to control the drop size during delivery, while the latter is used to drive electrochemical reactions in the deposited picoliter droplets. This tool has been used to print biological solutions, to electrodeposit copper, to electropolym erize functionalized pyrrole and to directly create crystalline microspots of nanobeads. The control of the printed features (resolution, thickness, and composition), the versatility of the printed materials and the added electro-assisted features demonstrate the tremendous potential of the Bioplume tool for research work and industrial applications.Les techniques de structuration et de fonctionnalisation de surfaces aux Ă©chelles micro- et nanomĂ©triques connaissent un intĂ©rĂȘt croissant liĂ© aux possibilitĂ©s qu'elles offrent pour l'Ă©tude des phĂ©nomĂšnes fondamentaux Ă  faible Ă©chelles et aux avancĂ©es technologiques qu'elles permettent dans les domaines de l'Ă©lectronique, de la photonique et de la bio-ingĂ©nierie. Parmi les nombreuses techniques qui ont Ă©tĂ© dĂ©veloppĂ©es durant les derniĂšres dĂ©cennies, les mĂ©thodes reposant sur l'utilisation de microleviers pour le dĂ©pĂŽt de faibles volumes de liquide offrent, entre autre, l'avantage d'ĂȘtre directes et parallĂ©lisĂ©es, et sont particuliĂšrement adaptĂ©es aux applications biologiques. Les travaux prĂ©sentĂ©s dans cette thĂšse portent sur la conception et la rĂ©alisation d'un systĂšme de dĂ©pĂŽt de gouttes micromĂ©triques Ă  l'aide de matrices de leviers en silicium. L'originalitĂ© de ce systĂšme, nommĂ© Bioplume, repose sur l'intĂ©gration de capteurs de forces et sur l'utilisation de mĂ©thodes de dĂ©pĂŽt assistĂ©es par champ ou par auto-assemblage pour contrĂŽler in-situ la taille, l'uniformitĂ© et la composition des motifs rĂ©alisĂ©s. Le systĂšme fonctionne en boucle fermĂ©e afin d'automatiser la fabrication de micromatrices de spots tout en garantissant la correction des erreurs d'alignement et le contrĂŽle de la force exercĂ©e et du temps de dĂ©pĂŽt. AprĂšs avoir validĂ© le chargement assistĂ© par Ă©lectromouillage et le dĂ©pĂŽt de solutions biologiques, nous utilisons les phĂ©nomĂšnes d'auto-organisation afin de crĂ©er directement, Ă  partir de solutions de nanoparticules, des microspots cristallins. Enfin, Ă  l'aide d'Ă©lectrodes incorporĂ©es aux leviers, des rĂ©actions Ă©lectrochimiques sont induites dans les volumes de liquides dĂ©posĂ©s (de l'ordre du picolitre), permettant l'Ă©lectrodĂ©position de cuivre et l'Ă©lĂ©ctropolymĂ©risation de pyrroles. Les nombreuses fonctionnalitĂ©s apportĂ©es Ă  ce systĂšme pendant cette thĂšse permettent d'Ă©tendre ses capacitĂ©s, faisant de Bioplume une solution fiable et complĂ©mentaire au x techniques de jet d'encre et de dip-pen en terme de taille de motifs

    Fabrication of lateral porous silicon membranes for planar microfluidics by means of ion implantation

    No full text
    International audienceWe introduce a new fabrication method based on ion implantation to create lateral porous silicon membranes and integrate them into planar microfluidic devices. Our proposed method relies on the fact that the formation of porous silicon by anodization highly depends on the dopant type and concentration, which can be manipulated by ion implantation. In order to confine the porosification at desired locations within silicon steps bridging microchannels, we use boron and phosphorus implantation to respectively create a p++ layer buried in an n-type silicon substrate, and a protective n-type surficial layer. The use of a metal electrode patterned onto the silicon step for current injection during anodization enables pores to propagate laterally during the membrane formation. The optimal implantation doses and energies leading to the required boron and phosphorus profiles are determined by means of process simulation and further confirmed by SIMS analysis. We demonstrate that the proposed fabrication process leads to the creation of lateral porous silicon membranes with open-ended pores adequately bridging microchannels and that we are able to manipulate the pore size (∌3–30 nm) and membrane porosity (∌15–65%) by adjusting the current density during anodization. The adequate dead-end filtration capability of the fabricated membranes was tested and demonstrates the interest of the presented fabrication process for microfluidic applications

    A micromachined resonant magnetic field sensor

    No full text
    M.S.Mark G Alle

    Integration of lateral porous silicon membranes into planar microfluidics

    No full text
    International audienceIn this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 ÎŒm long mesoporous membranes within 20 ÎŒm deep microchannels. The fabricated mem-branes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theo-retical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices

    Des aimants miniatures fabriqués à partir de nanoparticules

    No full text
    National audienc

    Des aimants miniatures fabriqués à partir de nanoparticules

    No full text
    National audienc

    MEMS Biosensors and COVID-19: Missed Opportunity

    No full text
    International audienceThe acceleration of climatic, digital, and health challenges is testing scientific communities. Scientists must provide concrete answers in terms of technological solutions to a society which expects immediate returns on the public investment. We are living such a scenario on a global scale with the pandemic crisis of COVID-19 where expectations for virological and serological diagnosis tests have been and are still gigantic. In this Perspective, we focus on a class of biosensors (mechanical biosensors) which are ubiquitous in the literature in the form of high performance, sensitive, selective, low-cost biological analysis systems. The spectacular development announced in their performance in the last 20 years suggested the possibility of finding these mechanical sensors on the front line of COVID-19, but the reality was quite different. We analyze the cause of this rendez-vous manqué, the operational criteria that kept these biosensors away from the field, and we indicate the pitfalls to avoid in the future in the development of all types of biosensors of which the ultimate goal is to be immediately operational for the intended application
    • 

    corecore