5,634 research outputs found

    Low-power optical beam steering by microelectromechanical waveguide gratings

    Full text link
    Optical beam steering is key for optical communications, laser mapping (LIDAR), and medical imaging. For these applications, integrated photonics is an enabling technology that can provide miniaturized, lighter, lower cost, and more power efficient systems. However, common integrated photonic devices are too power demanding. Here, we experimentally demonstrate, for the first time, beam steering by microelectromechanical (MEMS) actuation of a suspended silicon photonic waveguide grating. Our device shows up to 5.6{\deg} beam steering with 20 V actuation and a power consumption below the μ\muW level, i.e. more than 5 orders of magnitude lower power consumption than previous thermo-optic tuning methods. The novel combination of MEMS with integrated photonics presented in this work lays ground for the next generation of power-efficient optical beam steering systems

    Enhancement of raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide

    Get PDF
    We theoretically study coupling of dipole radiation into integrated Si3N4 strip waveguides functionalized with a nanoplasmonic antenna. This structure enables efficient coupling of enhanced Raman signals into the fundamental TE-mode of the waveguide

    Enhanced spontaneous raman signal collected evanescently by silicon nitride slot waveguides

    Get PDF
    We investigate the effect of waveguide geometry on the conversion efficiency of Raman signals collected by integrated photonic waveguides. Compared to strip-type photonic wires, we report a six-fold increase in conversion efficiency for silicon-nitride slot-waveguides

    Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform

    Get PDF
    Surface Enhanced Raman Spectroscopy (SERS) is a well-established technique for enhancing Raman signals. Recently photonic integrated circuits have been used, as an alternative to microscopy based excitation and collection, to probe SERS signals from external metallic nanoparticles. However, in order to develop quantitative on-chip SERS sensors, integration of dedicated nanoplasmonic antennas and waveguides is desirable. Here we bridge this gap by demonstrating for the first time the generation of SERS signals from integrated bowtie nanoantennas, excited and collected by a single mode waveguide, and rigorously quantify the enhancement process. The guided Raman power generated by a 4-Nitrothiophenol coated bowtie antenna shows an 8 x 10^6 enhancement compared to the free-space Raman scattering. An excellent correspondence is obtained between the theoretically predicted and observed absolute Raman power. This work paves the way towards fully integrated lab-on-a-chip systems where the single mode SERS-probe can be combined with other photonic, fluidic or biological functionalities.Comment: Submitted to Nature Photonic

    Surface enhanced Raman spectroscopy on single mode nanophotonic-plasmonic waveguides

    Get PDF
    We analyze the generation of Surface Enhanced Raman Spectroscopy signals from integrated bowtie antennas, excited and collected by a single mode silicon nitride waveguide, and discuss strategies to enhance the Signal-to-Noise Ratio
    • …
    corecore