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Abstract: We investigate the effect of waveguide geometry on the conversion efficiency of 

Raman signals collected by integrated photonic waveguides. Compared to strip-type photonic 

wires, we report a six-fold increase in conversion efficiency for silicon-nitride slot-waveguides.  
OCIS codes: (130.0130) Integrated Optics; (170.5660) Raman spectroscopy 

 

1. Introduction 

Raman spectroscopy is a direct technique for detection and analysis of chemical and biological substances [1]. 

However, because of the extremely small cross section of the Raman scattering process, usually a high-power pump 

laser, sensitive detectors and longer detection time are required. This limits the widespread use of this valuable 

technique. While most of the existing Raman spectroscopy systems use a confocal microscope, a fiber probe or a 

hollow fiber, we recently proposed and demonstrated a lab-on-a-chip approach to Raman spectroscopy based on 

single mode nano-photonic waveguides [2].  In this approach, the molecules under study are evanescently excited 

and the corresponding Raman signal is also evanescently collected using the same single-mode photonic 

waveguides. This technique exploits the enhancement effects inherent to the high-index-contrast waveguide and a 

long interaction length, which as per our calculations, leads to at least two orders of magnitude higher signal than in 

confocal microscopes. Since a single waveguide carries the pump beam and also collects the Stokes light, it can be 

easily integrated on a chip with additional components, such as an Arrayed Waveguide Grating (AWGs) acting as an 

on-chip spectrometer, facilitating development of compact, low-cost systems with high performance [3]. Further, 

these nano-photonic chips can be mass-produced using CMOS-compatible process steps, which may lead to a 

disposable, point-of-need tool for Raman analysis of chemical and biological materials. In this paper, we investigate 

the effect of waveguide width for strip and slotted waveguide geometry on the conversion efficiency of these Raman 

sensors, which is defined as the ratio between the emitted power collected by the waveguide and the incident pump 

power in the mode. 

2. Methodology and corresponding results 

The conversion from a guided pump beam to a guided Stokes signal can be expressed, for guided modes in 

awaveguide of arbitrary geometry, by a unit-less parameter, called specific conversion efficiency η0 defined as [2]  
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In this expression ng is the group index of the mode, λ0 is the wavelength of pump and the Raman signal (the Stokes 

shift is neglected since its effect on conversion efficiency is small) and κν is a constant with a value of 
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used to convert the Raman polarizability to the cross-section [1]. In eq. (1), the external integral is 

carried out in the region of refractive index n where analyte molecules are uniformly distributed; the internal integral 

is carried out in the whole space. The conversion efficiency (η) for an infinitesimal length dz of the waveguide can 

then be calculated as 0/wg pumpdP P dz    [2], where ρ and σ are respectively the density and Raman cross-

section of the molecules. Eq. (1) can be solved using mode solvers for waveguides of an arbitrary geometry. Fig. 1 

shows η0 for silicon nitride (refractive index=1.89, height of the silicon nitride is fixed at h =220 nm) strip and slot 

waveguides (fixed slot width, s = 150 nm, waveguide width w for slot discussed throughout this paper is inclusive of 

the slot width) for various widths calculated using COMSOL finite element mode-solver for λ0 = 785 nm. In Fig.1 

we clearly see that η0 decreases as waveguide width is increased, because the confinement of the mode in the core is 

increased thereby reducing the interaction volume in the upper cladding region where the analyte molecules are 

located. In particular, we theoretically expect about 6.4 fold increment in η0 for slot waveguide (slot width 150 nm) 
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compared to strip waveguide of width 700 nm. 

The experimental setup is described in [2]. Essentially, a laser pump at 785 nm is coupled into the TE mode of the 

waveguide. Isopropyl Alcohol (IPA) droplets are applied on top of the waveguides as analyte to compare the Raman 

signal strength for several waveguide geometries. The light transmitted through the waveguide is then collected, 

filtered and measured using a commercial spectrometer or power meter. The input laser power is set at 70 mW, with 

an estimated 8dB coupling loss per chip-facet. For experiments, strip waveguides of width w = 550 nm and 700 nm 

are chosen while for slot waveguides, slot width s =150 nm, and total waveguide width w =700 and w = 800 are 

chosen. The waveguides are wound as spirals (typical size: 800 μm x 500 μm). The Raman spectra were extracted as 

explained in [2]. The IPA peak corresponding to the C-C-O vibration at 819/cm wavenumbers is used as reference to 

compare the values of η0 for several waveguides. The ratio of total counts per second corresponding to this peak 

(which quantifies the collected power Pcol), and the corresponding transmitted power at the output (Ptx) provides the 

quasilinear dependencee ζ (L) on waveguide length L[2],  
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Where, Δα is the difference between waveguide losses for transmitted pump power and the Raman signal. The 

measured function ζ (L) is then fitted with least-mean-squared algorithm to extract the value of 0 in the units of 

counts/mW/s which can be used to compare the value of η0 for several waveguide geometries. The experimental data 

and the corresponding values of 0 obtained for several waveguides are provided in Fig. 1, which correspond 

reasonably well with trend predicted theoretically. In particular, in line with the theoretical prediction, we 

experimentally observe an enhancement of η0 by a factor of 5.8 for slot waveguide (slot width 150 nm) compared to 

strip waveguide of width 700 nm.  

             
Fig. 1: (Left) Theoretical conversion efficiency curves for slot waveguides for slot width 150 nm (black curve) and strip waveguides (blue curve). 
The blue, magenta, red and black diamond shapes are the theoretical values for the waveguides also studied experimentally. (Middle) The spectra 

of IPA as collected using 800 μm long waveguides for slot and strip waveguides. Short waveguide lengths with identical tapers are chosen so that 
waveguide losses are identical. The top spectrum is shifted vertically for clarity. (Right) The blue, magenta, red and black diamonds are 

experimental values; while the corresponding quasi-linear lines are the mean squared fit to ζ (L) as per eq. (2), provided as a guide to the eye. 

The corresponding extracted values of the ρση0 (in units of counts/mW/s) are also displayed next to the lines. 

3. Conclusions 

We have theoretically and experimentally investigated the effect of waveguide geometry on the evanescently excited 

and collected Raman signal using single mode photonic waveguides. We have shown that, in general, slot 

waveguides have higher conversion efficiency than the strip waveguides. For a given geometry, mode confinement 

by increasing the waveguide width, leads to smaller conversion efficiency. In particular, we have shown that 

compared to silicon nitride waveguides with strip geometry, silicon nitride slot waveguide have about six times 

higher intrinsic conversion efficiency. 
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