research

Low-power optical beam steering by microelectromechanical waveguide gratings

Abstract

Optical beam steering is key for optical communications, laser mapping (LIDAR), and medical imaging. For these applications, integrated photonics is an enabling technology that can provide miniaturized, lighter, lower cost, and more power efficient systems. However, common integrated photonic devices are too power demanding. Here, we experimentally demonstrate, for the first time, beam steering by microelectromechanical (MEMS) actuation of a suspended silicon photonic waveguide grating. Our device shows up to 5.6{\deg} beam steering with 20 V actuation and a power consumption below the μ\muW level, i.e. more than 5 orders of magnitude lower power consumption than previous thermo-optic tuning methods. The novel combination of MEMS with integrated photonics presented in this work lays ground for the next generation of power-efficient optical beam steering systems

    Similar works

    Full text

    thumbnail-image