155 research outputs found
Methodical aspects of soil ecosystem services valuation
Ecosystem Services Valuation is an important tool for dialogue in the decision-making process and to highlight the society’s dependence on the biosphere for well-being. Soil is the primary source of ecosystem services such as the production of food and regulating the climate, however the methodological alternatives for valuing soil ecosystem services remain poorly studied. The aim of this paper is to demonstrate methodical aspects of ecosystem services valuation, with the special attention to soil services within agricultural context. We introduce frameworks specific for soil ecosystem services. Then, we present a case study where soil ecosystem services were evaluated within agricultural context. We conclude that such valuation represents the newest trend in soil science wherein soil resources are treated in the wider context of impacts on human well-being
Payment for water-ecosystem services monitoring in Brazil.
The reduction of tropical forests has generated a loss of ecosystem services across the globe. In Brazil, essential biomes related to water provision (such as the Atlantic Forest and Savanna) have been degraded, compromising water-ecosystem services. Payment for water-ecosystem services (water PES) has been implemented as a tool to stimulate changes in the use and management of these areas. Many water PES projects have emerged in Brazil using forest restoration, aiming to improve water ecosystem services. In this context, this study identified the types of monitoring carried out in Brazilian water PES projects, to include their main characteristics and gaps. Five Brazilian projects were selected for analysis as case studies. Interviews were then conducted with stakeholders to get current data on their monitoring practices. The data from the literature review, case study approach, and interviews were analyzed from the perspective of monitoring guides recommendations. Different aspects were analyzed, such as objectives, institutional arrangements, type of monitoring, indicators, and frequency of monitoring. The study indicates that there is a lack of standardized methods, making it difficult to specify the results of the implemented actions. The central gap is related to benefit monitoring. It is necessary to establish a holistic monitoring system, dealing with the ecosystem as a complex socio-ecological system. Some perspectives to solve the problems were proposed. The results of this work may help not only improve the current and future PES schemes in Brazil but also in other countries, especially developing ones, where vulnerable populations depend upon them
Cytosolic prion protein in neurons
Localizing the cellular prion protein (PrPC) in the brain is necessary for understanding the pathogenesis of prion diseases. However, the precise ultrastructural localization of PrPC still remains enigmatic. We performed the first quantitative study of the ultrastructural localization of PrPC in the mouse hippocampus using high-resolution cryoimmunogold electron microscopy. PrPC follows the standard biosynthetic trafficking pathway with a preferential localization in late endosomal compartments and on the plasma membrane of neurons and neuronal processes. PrPC is found with the same frequency within the synaptic specialization and perisynaptically, but is almost completely excluded from synaptic vesicles. Unexpectedly, PrP is also found in the cytosol in subpopulations of neurons in the hippocampus, neocortex, and thalamus but not the cerebellum. Cytosolic PrP may have altered susceptibility to aggregation, suggesting that these neurons might play a significant role in the pathogenesis of prion diseases, in particular those mammals harboring mutant PrP genes
The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest
Natural regeneration provides multiple benefits to nature and human societies, and can play a major role in global and national restoration targets. However, these benefits are context specific and impacted by both biophysical and socioeconomic heterogeneity across landscapes. Here we investigate the benefits of natural regeneration for climate change mitigation, sediment retention and biodiversity conservation in a spatially explicit way at very high resolution for a region within the global biodiversity hotspot of the Atlantic Forest. We classified current land-use cover in the region and simulated a natural regeneration scenario in abandoned pasturelands, areas where potential conflicts with agricultural production would be minimized and where some early stage regeneration is already occurring. We then modelled changes in biophysical functions for climate change mitigation and sediment retention, and performed an economic valuation of both ecosystem services. We also modelled how land-use changes affect habitat availability for species. We found that natural regeneration can provide significant ecological and social benefits. Economic values of climate change mitigation and sediment retention alone could completely compensate for the opportunity costs of agricultural production over 20 years. Habitat availability is improved for three species with different dispersal abilities, although by different magnitudes. Improving the understanding of how costs and benefits of natural regeneration are distributed can be useful to design incentive structures that bring farmers’ decision making more in line with societal benefits. This alignment is crucial for natural regeneration to fulfil its potential as a large-scale solution for pressing local and global environmental challenges
When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil
Providing food and other products to a growing human population while safeguarding natural ecosystems and the provision of their services is a significant scientific, social and political challenge. With food demand likely to double over the next four decades, anthropization is already driving climate change and is the principal force behind species extinction, among other environmental impacts. The sustainable intensification of production on current agricultural lands has been suggested as a key solution to the competition for land between agriculture and natural ecosystems. However, few investigations have shown the extent to which these lands can meet projected demands while considering biophysical constraints. Here we investigate the improved use of existing agricultural lands and present insights into avoiding future competition for land. We focus on Brazil, a country projected to experience the largest increase in agricultural production over the next four decades and the richest nation in terrestrial carbon and biodiversity. Using various models and climatic datasets, we produced the first estimate of the carrying capacity of Brazil's 115 million hectares of cultivated pasturelands. We then investigated if the improved use of cultivated pasturelands would free enough land for the expansion of meat, crops, wood and biofuel, respecting biophysical constraints (i.e., terrain, climate) and including climate change impacts. We found that the current productivity of Brazilian cultivated pasturelands is 32–34% of its potential and that increasing productivity to 49–52% of the potential would suffice to meet demands for meat, crops, wood products and biofuels until at least 2040, without further conversion of natural ecosystems. As a result up to 14.3 Gt CO2 Eq could be mitigated. The fact that the country poised to undergo the largest expansion of agricultural production over the coming decades can do so without further conversion of natural habitats provokes the question whether the same can be true in other regional contexts and, ultimately, at the global scale
Recommended from our members
Results from on-the-ground efforts to promote sustainable cattle ranching in the Brazilian Amazon
Agriculture in Brazil is booming. Brazil has the world’s second largest cattle herd and is the second largest producer of soybeans, with the production of beef, soybeans, and bioethanol forecast to increase further. Questions remain, however, about how Brazil can reconcile increases in agricultural production with protection of its remaining natural vegetation. While high hopes have been placed on the potential for intensification of low-productivity cattle ranching to spare land for other agricultural uses, cattle productivity in the Amazon biome (29% of the Brazilian cattle herd) remains stubbornly low, and it is not clear how to realize theoretical productivity gains in practice. We provide results from six initiatives in the Brazilian Amazon, which are successfully improving cattle productivity in beef and dairy production on more than 500,000 hectares of pastureland, while supporting compliance with the Brazilian Forest Code. Spread across diverse geographies, and using a wide range of technologies, participating farms have improved productivity by 30-490%. High-productivity cattle ranching requires some initial investment (R410-2180/ha), with average pay-back times of 2.5-8.5 years. We conclude by reflecting on the challenges that must be overcome to scale up these young initiatives, avoid rebound increases in deforestation, and mainstream sustainable cattle ranching in the Amazon.E.K.H.J.zE was funded by BBSRC grant BB/J014540/1 and the Tim Whitmore 215 Trust Fund
Putting the pieces together: Integration for forest landscape restoration implementation
© 2019 John Wiley & Sons, Ltd. The concept of forest landscape restoration (FLR) is being widely adopted around the globe by governmental, non-governmental agencies, and the private sector, all of whom see FLR as an approach that contributes to multiple global sustainability goals. Originally, FLR was designed with a clearly integrative dimension across sectors, stakeholders, space and time, and in particular across the natural and social sciences. Yet, in practice, this integration remains a challenge in many FLR efforts. Reflecting this lack of integration are the continued narrow sectoral and disciplinary approaches taken by forest restoration projects, often leading to marginalisation of the most vulnerable populations, including through land dispossessions. This article aims to assess what lessons can be learned from other associated fields of practice for FLR implementation. To do this, 35 scientists came together to review the key literature on these concepts to suggest relevant lessons and guidance for FLR. We explored the following large-scale land use frameworks or approaches: land sparing/land sharing, the landscape approach, agroecology, and socio-ecological systems. Also, to explore enabling conditions to promote integrated decision making, we reviewed the literature on understanding stakeholders and their motivations, tenure and property rights, polycentric governance, and integration of traditional and Western knowledge. We propose lessons and guidance for practitioners and policymakers on ways to improve integration in FLR planning and implementation. Our findings highlight the need for a change in decision-making processes for FLR, better understanding of stakeholder motivations and objectives for FLR, and balancing planning with flexibility to enhance social–ecological resilience.The Frank Jackson Foundatio
Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+
There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage
Reconciling rural development and ecological restoration: Strategies and policy recommendations for the Brazilian Atlantic Forest
Increased demand for both agricultural production and forest restoration may lead to increased competition for land in the next decades. Sustainably increasing cattle ranching productivity is a potential solution to reconcile different land uses, while also improving biodiversity conservation and the provision of ecosystem services. If not strategically implemented in integration with complementary policies, sustainable intensification can however result in negative environmental, economic and social effects. We analyzed the potential for sustainable intensification as a solution for a conflict between agricultural expansion and forest restoration in the Paraitinga Watershed at the Brazilian Atlantic Forest, a global biodiversity hotspot. In addition, we provide policy recommendations for sustainable development in the region, based on interviews with producers and local actors. We found that the Paraitinga Watershed has the potential to increase its cattle-ranching productivity and, as a result, relinquish spared land for other uses. This was true even in the most conservative intensification scenario considered (50% of the maximum potential productivity reached), in which 76,702 ha of pastures can be spared for other uses (46% of total pasture area). We found that restoration, apiculture and rural tourism are promising activities to promote sustainable development in the region, thus potentially increasing food production and mitigating competition for land. Our study shows that results from socioeconomic interviews and biophysical modelling of potential productivity increases offer robust insights into practical solutions on how to pursue sustainable development in one of the world’s most threatened biodiversity hotspots
Length of Variable Numbers of Tandem Repeats in the Carboxyl Ester Lipase (CEL) Gene May Confer Susceptibility to Alcoholic Liver Cirrhosis but Not Alcoholic Chronic Pancreatitis
Background Carboxyl-ester lipase (CEL) contributes to fatty acid ethyl ester metabolism, which is implicated in alcoholic pancreatitis. The CEL gene harbours a variable number of tandem repeats (VNTR) region in exon 11. Variation in this VNTR has been linked to monogenic pancreatic disease, while conflicting results were reported for chronic pancreatitis (CP). Here, we aimed to investigate a potential association of CEL VNTR lengths with alcoholic CP. Methods Overall, 395 alcoholic CP patients, 218 patients with alcoholic liver cirrhosis (ALC) serving as controls with a comparable amount of alcohol consumed, and 327 healthy controls from Germany and the United Kingdom (UK) were analysed by determination of fragment lengths by capillary electrophoresis. Allele frequencies and genotypes of different VNTR categories were compared between the groups. Results Twelve repeats were overrepresented in UK ACP patients (P = 0.04) compared to controls, whereas twelve repeats were enriched in German ALC compared to alcoholic CP patients (P = 0.03). Frequencies of CEL VNTR lengths of 14 and 15 repeats differed between German ALC patients and healthy controls (P = 0.03 and 0.008, respectively). However, in the genotype and pooled analysis of VNTR lengths no statistical significant association was depicted. Additionally, the 16–16 genotype as well as 16 repeats were more frequent in UK ALC than in alcoholic CP patients (P = 0.034 and 0.02, respectively). In all other calculations, including pooled German and UK data, allele frequencies and genotype distributions did not differ significantly between patients and controls or between alcoholic CP and ALC. Conclusions We did not obtain evidence that CEL VNTR lengths are associated with alcoholic CP. However, our results suggest that CEL VNTR lengths might associate with ALC, a finding that needs to be clarified in larger cohorts
- …