86 research outputs found
Intra-cycle depolarization of ultraintense laser pulses focused by off-axis parabolic mirrors
A study of the structure of the electric and magnetic fields of ultraintense laser pulses focused by an off-axis parabolic mirror is reported. At first, a theoretical model is laid out, whose final equations integration allows the space and time structure of the fields to be retrieved. The model is then employed to investigate the field patterns at different times within the optical cycle, for off-axis parabola parameters normally employed in the context of ultraintense laser–plasma interaction experiments. The results show that nontrivial, complex electromagnetic field patterns are observed at the time at which the electric and magnetic fields are supposed to vanish. The importance of this effect is then studied for different laser polarizations, numbers and off-axis angles
Conceptual Design of a Laser Driver for a Plasma Accelerator User Facility
The purpose of the European project EuPRAXIA is to realize a novel plasma accelerator user facility. The laser driven approach sets requirements for a very high performance level for the laser system: pulse peak power in the petawatt range, pulse repetition rate of several tens of Hz, very high beam quality and overall stability of the system parameters, along with 24/7 operation availability for experiments. Only a few years ago these performances were considered unrealistic, but recent advances in laser technologies, in particular in the chirped pulse amplification (CPA) of ultrashort pulses and in high energy, high repetition rate pump lasers have changed this scenario. This paper discusses the conceptual design and the overall architecture of a laser system operating as the driver of a plasma acceleration facility for different applications. The laser consists of a multi-stage amplification chain based CPA Ti:Sapphire, using frequency doubled, diode laser pumped Nd or Yb solid state lasers as pump sources. Specific aspects related to the cooling strategy of the main amplifiers, the operation of pulse compressors at high average power, and the beam pointing diagnostics are addressed in detail
Current status of the research on transparent YAG ceramics as laser hosts from an Italian network
This work describes the results obtained using two different processing systems for the production of YAG based ceramics. One involves the use of commercially available oxide powders (Yb2O3, Y2O3, Al2O3) The other involves the use of Yb-doped Y2O3 (Yb, 9.8%) powders obtained by microwave assisted co-precipitation from salts solution and a commercial alumina (Al2O3). Both systems are processed by wet mechanical mixing of starting oxides and reactive sintering of the obtained mixtur
Overview and specifications of laser and target areas at the Intense Laser Irradiation Laboratory
Abstract
We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory (ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users, including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target
Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition
We present experimental results at intensities relevant to Shock Ignition
obtained at the sub-ns Prague Asterix Laser System in 2012 . We studied shock waves
produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at
1ω (1315 nm) at 7 × 10 13 W/cm 2 to create a pre-plasma on the front side of the target and
a second at 3ω (438 nm) at ∼ 10 16 W/cm 2 to create the shock wave. Multilayer targets
composed of 25 (or 40 μm) of plastic (doped with Cl), 5 μm of Cu (for Kα diagnostics)
and 20 μm of Al for shock measurement were used. We used X-ray spectroscopy of Cl
to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and
spectral properties of the fast electrons and a streak camera for shock breakout measurements.
Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and
Two Plasmon Decay) were studied by collecting the back scattered light and analysing its
spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum
pressure reached in our experiment we performed hydro simulations with CHIC and DUED
codes. The maximum shock pressure generated in our experiment at the front side of the
target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was
estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV.
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributio
Square Kilometer Array project status report
This paper will describe the progress of the SKA-1 Telescope during the period from Preliminary Design Review to Critical Design Review. In addition to this, it will provide information on the management of the project with respect to managing cost and scope whilst working within a fixed cost cap. The paper will consider the balance between the technical choices made with the risk of delivering a large, distributed observatory across several continents. In addition, it will consider the challenges of carrying this out whilst developing the organisation towards an Inter-Governmental Organisation. It will consider, briefly, the key management tools used and the lessons learned...
A new line for laser-driven light ions acceleration and related TNSA studies
In this paper, we present the status of the line for laser-driven light ions acceleration (L3IA) currently under implementation at the Intense Laser Irradiation Laboratory (ILIL), and we provide an overview of the pilot experimental activity on laser-driven ion acceleration carried out in support of the design of the line. A description of the main components is given, including the laser, the beam transport line, the interaction chamber, and the diagnostics. A review of the main results obtained so far during the pilot experimental activity is also reported, including details of the laser-plasma interaction and ion beam characterization. A brief description of the preliminary results of a dedicated numerical modeling is also provided
Interpretable surface-based detection of focal cortical dysplasias:a Multi-centre Epilepsy Lesion Detection study
One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
- …