115 research outputs found

    Sex differences in the Simon task help to interpret sex differences in selective attention.

    Get PDF
    In the last decade, a number of studies have reported sex differences in selective attention, but a unified explanation for these effects is still missing. This study aims to better understand these differences and put them in an evolutionary psychological context. 418 adult participants performed a computer-based Simon task, in which they responded to the direction of a left or right pointing arrow appearing left or right from a fixation point. Women were more strongly influenced by task-irrelevant spatial information than men (i.e., the Simon effect was larger in women, Cohen's d = 0.39). Further, the analysis of sex differences in behavioral adjustment to errors revealed that women slow down more than men following mistakes (d = 0.53). Based on the combined results of previous studies and the current data, it is proposed that sex differences in selective attention are caused by underlying sex differences in core abilities, such as spatial or verbal cognition

    Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD

    Get PDF
    Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression

    A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    Get PDF
    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (&gt;10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations

    Data Linkage: A powerful research tool with potential problems

    Get PDF
    Background: Policy makers, clinicians and researchers are demonstrating increasing interest in using data linked from multiple sources to support measurement of clinical performance and patient health outcomes. However, the utility of data linkage may be compromised by sub-optimal or incomplete linkage, leading to systematic bias. In this study, we synthesize the evidence identifying participant or population characteristics that can influence the validity and completeness of data linkage and may be associated with systematic bias in reported outcomes

    Association of Frailty based on self-reported physical function with directly measured kidney function and mortality

    Get PDF
    BACKGROUND: Use of serum creatinine to estimate GFR may lead to underestimation of the association between self-reported frailty and kidney function. Our objectives were to evaluate the association of measured GFR (mGFR) with self-reported frailty among patients with CKD and to determine whether self-reported frailty was associated with death after adjusting for mGFR. METHODS: Participants in the Modification of Diet in Renal Disease study (1989–1993) had GFR measured using iothalamate clearance (mGFR), and GFR was estimated based on the CKD-EPI creatinine (eGFRcr) and cystatin C (eGFRcys) equations. We defined self-reported frailty as three or more of: exhaustion, poor physical function, low physical activity, and low body weight. Death was ascertained through 2007 using the National Death Index and the United States Renal Data System. RESULTS: Eight hundred twelve MDRD participants (97 %) had complete data on self-reported frailty (16 % prevalence, N = 130) and mGFR (mean (SD) 33.1 ± 11.7 ml/min/1.73 m(2)). Higher GFR was associated with lower odds of self-reported frailty based on mGFR, (OR 0.71, 95 % CI 0.60–0.86 per 10 ml/min/1.73 m(2)), eGFRcr (OR 0.80, 95 % CI 0.67–0.94 per 10 ml/min/1.73 m(2)), and eGFRcys (OR 0.75, 95 % CI 0.62–0.90 per 10 ml/min/1.73 m(2)). Median follow-up was 17 (IQR 11–18) years, with 371 deaths. Self-reported frailty was associated with a higher risk of death (HR 1.71, 95 % CI 1.26–2.30), which was attenuated to a similar degree when mGFR (HR 1.48, 95 % CI 1.08–2.00), eGFRcr (HR 1.57, 95 % CI 1.15–2.10), or eGFRcys (HR 1.51, 95 % CI 1.10–2.10) was included as an indicator of kidney function. CONCLUSIONS: We found an inverse association between kidney function and self-reported frailty that was similar for mGFR, eGFR and eGFRcys. In this relatively healthy cohort of clinical trial participants with CKD, using serum creatinine to estimate GFR did not substantially alter the association of GFR with self-reported frailty or of self-reported frailty with death

    Dopamine, affordance and active inference.

    Get PDF
    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level

    Early chronic kidney disease: diagnosis, management and models of care

    Get PDF
    Chronic kidney disease (CKD) is prevalent in many countries, and the costs associated with the care of patients with end-stage renal disease (ESRD) are estimated to exceed US$1 trillion globally. The clinical and economic rationale for the design of timely and appropriate health system responses to limit the progression of CKD to ESRD is clear. Clinical care might improve if early-stage CKD with risk of progression to ESRD is differentiated from early-stage CKD that is unlikely to advance. The diagnostic tests that are currently used for CKD exhibit key limitations; therefore, additional research is required to increase awareness of the risk factors for CKD progression. Systems modelling can be used to evaluate the impact of different care models on CKD outcomes and costs. The US Indian Health Service has demonstrated that an integrated, system-wide approach can produce notable benefits on cardiovascular and renal health outcomes. Economic and clinical improvements might, therefore, be possible if CKD is reconceptualized as a part of primary care. This Review discusses which early CKD interventions are appropriate, the optimum time to provide clinical care, and the most suitable model of care to adopt
    corecore