39 research outputs found

    Characteristic Parameters of Liquid Crystal Cells and Their Measurements

    Full text link

    Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK

    Get PDF
    AbstractThe hepatocyte growth factor (HGF) receptor, Met, is frequently overexpressed in nasopharyngeal cancer (NPC). Here, we showed for the first time that human NPC cells with high Met expression were more sensitive to the cell motility and invasion effect of HGF. The downregulation of Met by small interfering RNA decreased tumor cell invasion/migration. HGF significantly increased matrix metalloproteinase-9 production. This was inhibited by blocking phosphatidylinositide 3-kinase (PI3K) and c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling pathways. We also demonstrated that PI3K induced activation of JNK, with Akt as a potential point of this cross-talk. These results provide new insights into the molecular mechanism responsible for NPC progression and metastasis

    Acute renal impairment in coronavirus-associated severe acute respiratory syndrome

    Get PDF
    Acute renal impairment in coronavirus-associated severe acute respiratory syndrome.BackgroundSevere acute respiratory syndrome (SARS) is a newly emerged infection from a novel coronavirus (SARS-CoV). Apart from fever and respiratory complications, acute renal impairment has been observed in some patients with SARS. Herein, we describe the clinical, pathologic, and laboratory features of the acute renal impairment complicating this new viral infection.MethodsWe conducted a retrospective analysis of the plasma creatinine concentration and other clinical parameters of the 536 SARS patients with normal plasma creatinine at first clinical presentation, admitted to two regional hospitals following a major outbreak in Hong Kong in March 2003. Kidney tissues from seven other patients with postmortem examinations were studied by light microscopy and electron microscopy.ResultsAmong these 536 patients with SARS, 36 (6.7%) developed acute renal impairment occurring at a median duration of 20 days (range 5–48 days) after the onset of viral infection despite a normal plasma creatinine level at first clinical presentation. The acute renal impairment reflected the different prerenal and renal factors that exerted renal insult occurring in the context of multiorgan failure. Eventually, 33 SARS patients (91.7%) with acute renal impairment died. The mortality rate was significantly higher among patients with SARS and acute renal impairment compared with those with SARS and no renal impairment (91.7% vs. 8.8%) (P < 0.0001). Renal tissues revealed predominantly acute tubular necrosis with no evidence of glomerular pathology. The adjusted relative risk of mortality associated with the development of acute renal impairment was 4.057 (P < 0.001). By multivariate analysis, acute respiratory distress syndrome and age were the most significant independent risk factors predicting the development of acute renal impairment in SARS.ConclusionAcute renal impairment is uncommon in SARS but carries a high mortality. The acute renal impairment is likely to be related to multi-organ failure rather than the kidney tropism of the virus. The development of acute renal impairment is an important negative prognostic indicator for survival with SARS

    Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60

    Full text link
    Muon spin rotation measurements of the magnetic field distribution in the vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60} reveal a vortex-lattice melting transition at much lower temperature than that in the fully oxygenated material. The transition is best described by a model in which adjacent layers of ``pancake'' vortices decouple in the liquid phase. Evidence is also found for a pinning-induced crossover from a solid 3D to quasi-2D vortex lattice, similar to that observed in the highly anisotropic superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported

    Search for leptoquark pair production decaying into te−te¯ + or tμ−t¯μ+ in multi-lepton final states in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for leptoquark pair production decaying into te−te¯ + or tμ−t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at √s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te− (tμ−), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQd mix is at 1.58 (1.59) TeV and on the vector leptoquark mass mU˜1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario

    Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state

    Get PDF
    This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb−1 of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30+0.13−0.09) is observed (expected) at 95% confidence level

    Deep generative models for fast photon shower simulation in ATLAS

    Get PDF
    The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques

    Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb−1 of proton–proton collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for pair production of doubly charged Higgs bosons (H±± ), each decaying into a pair of prompt, isolated, and highly energetic leptons with the same electric charge, is presented. The search uses a proton–proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider (LHC). This analysis focuses on same-charge leptonic decays, H±±→ℓ±ℓ′± where ℓ,ℓ′=e,μ,τ, in two-, three-, and four-lepton channels, but only considers final states which include electrons or muons. No evidence of a signal is observed. Corresponding upper limits on the production cross-section of a doubly charged Higgs boson are derived, as a function of its mass m(H±±), at 95% confidence level. Assuming that the branching ratios to each of the possible leptonic final states are equal, B(H±±→e±e±)=B(H±±→e±μ±)=B(H±±→μ±μ±)=B(H±±→e±τ±)=B(H±±→μ±τ±)=B(H±±→τ±τ±)=1/6, the observed (expected) lower limit on the mass of a doubly charged Higgs boson is 1080 GeV (1065 GeV) within the left-right symmetric type-II seesaw model, which is the strongest limit to date produced by the ATLAS Collaboration. Additionally, this paper provides the first direct test of the Zee–Babu neutrino mass model at the LHC, yielding an observed (expected) lower limit of m(H±±) = 900 GeV (880 GeV)
    corecore