8 research outputs found

    Numerical simulations of seismo-acoustic nuisance patterns from an induced M1.8 earthquake in the Helsinki, southern Finland, metropolitan area

    Full text link
    Irritating earthquake sounds, reported also at low ground shaking levels, can negatively impact the social acceptance of geo-engineering applications. Concurringly, earthquake sound patterns have been linked to faulting mechanisms, thus opening possibilities for earthquake source characterisation. Inspired by consistent reports of felt and heard disturbances associated with the weeks-long stimulation of a 6 km-deep geothermal system in 2018 below the Otaniemi district of Espoo, Helsinki, we conduct fully-coupled 3D numerical simulations of wave propagation in solid Earth and the atmosphere. We assess the sensitivity of ground shaking and audible noise distributions to the source geometry of small induced earthquakes, using the largest recorded event in 2018 of magnitude ML=1.8. Utilizing recent computational advances, we are able to model seismo-acoustic frequencies up to 25 Hz therefore reaching the lower limit of human sound sensitivity. Our results provide for the first time synthetic spatial nuisance distributions of audible sounds at the 50-100 m scale for a densely populated metropolitan region. In five here presented 3D coupled elastic-acoustic scenario simulations, we include the effects of topography and subsurface structure, and analyse the audible loudness of earthquake generated acoustic waves. We can show that in our region of interest, S-waves are generating the loudest sound disturbance. We compare our sound nuisance distributions to commonly used empirical relationships using statistical analysis. We find that our 3D synthetics are generally smaller than predicted empirically, and that the interplay of source-mechanism specific radiation pattern and topography can add considerable non-linear contributions. Our study highlights the complexity and information content of spatially variable audible effects, even when caused by very small earthquakes.Comment: 29 pages, 9 figures. This paper has been submitted to the Bulletin of the Seismological Society of America for publicatio

    3D Linked Subduction, Dynamic Rupture, Tsunami, and Inundation Modeling: Dynamic Effects of Supershear and Tsunami Earthquakes, Hypocenter Location, and Shallow Fault Slip

    Get PDF
    Physics-based dynamic rupture models capture the variability of earthquake slip in space and time and can account for the structural complexity inherent to subduction zones. Here we link tsunami generation, propagation, and coastal inundation with 3D earthquake dynamic rupture (DR) models initialized using a 2D seismo-thermo-mechanical geodynamic (SC) model simulating both subduction dynamics and seismic cycles. We analyze a total of 15 subduction-initialized 3D dynamic rupture-tsunami scenarios in which the tsunami source arises from the time-dependent co-seismic seafloor displacements with flat bathymetry and inundation on a linearly sloping beach. We first vary the location of the hypocenter to generate 12 distinct unilateral and bilateral propagating earthquake scenarios. Large-scale fault topography leads to localized up- or downdip propagating supershear rupture depending on hypocentral depth. Albeit dynamic earthquakes differ (rupture speed, peak slip-rate, fault slip, bimaterial effects), the effects of hypocentral depth (25–40 km) on tsunami dynamics are negligible. Lateral hypocenter variations lead to small effects such as delayed wave arrival of up to 100 s and differences in tsunami amplitude of up to 0.4 m at the coast. We next analyse inundation on a coastline with complex topo-bathymetry which increases tsunami wave amplitudes up to ≈1.5 m compared to a linearly sloping beach. Motivated by structural heterogeneity in subduction zones, we analyse a scenario with increased Poisson's ratio of ν = 0.3 which results in close to double the amount of shallow fault slip, ≈1.5 m higher vertical seafloor displacement, and a difference of up to ≈1.5 m in coastal tsunami amplitudes. Lastly, we model a dynamic rupture “tsunami earthquake” with low rupture velocity and low peak slip rates but twice as high tsunami potential energy. We triple fracture energy which again doubles the amount of shallow fault slip, but also causes a 2 m higher vertical seafloor uplift and the highest coastal tsunami amplitude (≈7.5 m) and inundation area compared to all other scenarios. Our mechanically consistent analysis for a generic megathrust setting can provide building blocks toward using physics-based dynamic rupture modeling in Probabilistic Tsunami Hazard Analysis

    ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems

    Get PDF
    ExaHyPE (“An Exascale Hyperbolic PDE Engine”) is a software engine for solving systems of first-order hyperbolic partial differential equations (PDEs). Hyperbolic PDEs are typically derived from the conservation laws of physics and are useful in a wide range of application areas. Applications powered by ExaHyPE can be run on a student’s laptop, but are also able to exploit thousands of processor cores on state-of-the-art supercomputers. The engine is able to dynamically increase the accuracy of the simulation using adaptive mesh refinement where required. Due to the robustness and shock capturing abilities of ExaHyPE’s numerical methods, users of the engine can simulate linear and non-linear hyperbolic PDEs with very high accuracy. Users can tailor the engine to their particular PDE by specifying evolved quantities, fluxes, and source terms. A complete simulation code for a new hyperbolic PDE can often be realised within a few hours — a task that, traditionally, can take weeks, months, often years for researchers starting from scratch. In this paper, we showcase ExaHyPE’s workflow and capabilities through real-world scenarios from our two main application areas: seismology and astrophysics

    The EU Center of Excellence for Exascale in Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase

    Get PDF
    publishedVersio

    Supplementary material for 3D Acoustic-Elastic Coupling with Gravity: The Dynamics of the 2018 Palu, Sulawesi Earthquake and Tsunami

    No full text
    This repository contains the supplementary files for our SC21 submission: "3D Acoustic-Elastic Coupling with Gravity: The Dynamics of the 2018 Palu, Sulawesi Earthquake and Tsunami". It contains the input data for all simulations. For more details, please refer to the included README.md files. The directory "seissol-sc21-revision-source-code" contains the version of SeisSol that we used

    SeisSol

    No full text
    SeisSol is a scientific software for the numerical simulation of seismic wave phenomena and earthquake dynamics. It is based on the discontinuous Galerkin method combined with ADER time discretization.If you use this software, please cite it using the metadata from this file
    corecore