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a b s t r a c t

ExaHyPE (‘‘An Exascale Hyperbolic PDE Engine’’) is a software engine for solving systems of first-
order hyperbolic partial differential equations (PDEs). Hyperbolic PDEs are typically derived from
the conservation laws of physics and are useful in a wide range of application areas. Applications
powered by ExaHyPE can be run on a student’s laptop, but are also able to exploit thousands of
processor cores on state-of-the-art supercomputers. The engine is able to dynamically increase the
accuracy of the simulation using adaptive mesh refinement where required. Due to the robustness
and shock capturing abilities of ExaHyPE’s numerical methods, users of the engine can simulate
linear and non-linear hyperbolic PDEs with very high accuracy. Users can tailor the engine to their
particular PDE by specifying evolved quantities, fluxes, and source terms. A complete simulation code
for a new hyperbolic PDE can often be realised within a few hours — a task that, traditionally, can
take weeks, months, often years for researchers starting from scratch. In this paper, we showcase
ExaHyPE’s workflow and capabilities through real-world scenarios from our two main application
areas: seismology and astrophysics.
Program summary
Program title: ExaHyPE-Engine
Program Files doi: http://dx.doi.org/10.17632/6sz8h6hnpz.1
Licensing provisions: BSD 3-clause
Programming languages: C++, Python, Fortran
Nature of Problem: The ExaHyPE PDE engine offers robust algorithms to solve linear and non-linear
hyperbolic systems of PDEs written in first order form. The systems may contain both conservative
and non-conservative terms.
Solution method: ExaHyPE employs the discontinuous Galerkin (DG) method combined with explicit
one-step ADER (arbitrary high-order derivative) time-stepping. An a-posteriori limiting approach is
applied to the ADER-DG solution, whereby spurious solutions are discarded and recomputed with
a robust, patch-based finite volume scheme. ExaHyPE uses dynamical adaptive mesh refinement
to enhance the accuracy of the solution around shock waves, complex geometries, and interesting
features.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
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1. Introduction

The study of waves has always been an important subject of
research. It is not difficult to see why: Earthquakes and tsunamis
have a direct and serious impact on the daily lives of millions
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of people. A better understanding of electromagnetic waves has
enabled ever faster wireless communication. The study of grav-
itational waves has allowed new insight into the composition
and history of our Universe. Those physical phenomena, despite
arising in different fields of physics and engineering, can be
modelled in a similar way from a mathematical perspective: as
a system of hyperbolic partial differential equations (PDE). The
consortium behind the ExaHyPE project (‘‘An Exascale Hyperbolic
PDE Engine’’) translated this structural similarity into a software
engine for modelling and simulating a wide range of hyperbolic
PDE systems.

ExaHyPE is intended as an engine, i.e. it allows only a lim-
ited number of numerical schemes on a fixed mesh infrastruc-
ture, but provides high flexibility in terms of the PDE system to
be solved. The consortium focuses on two challenging scenar-
ios, long-range seismic risk assessment, see e.g. [1,2]; and the
search for gravitational waves emitted by binary neutron stars,
see e.g [3–6].

A user with a given application only needs to implement the
PDE system and problem-specific well-posed initial and bound-
ary conditions. To exploit dynamic mesh refinement the user
only needs to implement suitable criteria for mesh refinement
and admissibility of solutions. From a user’s perspective, com-
plicated PDE systems can be implemented without considering
the complex issues of designing a performance-oriented high-
order solver on a parallel compute cluster. Thus, the Engine
enables medium-sized interdisciplinary research teams to quickly
realise extreme-scale simulations of grand challenges modelled
by hyperbolic conservation laws.

ExaHyPE implements a high-order discontinuous Galerkin
(DG) approach. DG schemes were first introduced by Reed et al.
[7] for the neutron transport equation and subsequently extended
to general hyperbolic systems in a series of papers by Cockburn
et al. [8–12]. Within our DG framework, higher-order accuracy
in time and space is achieved using the Arbitrary high-order
DERivative (ADER) approach first introduced for purely linear
constant-coefficient equations in [13] and then extended to non-
linear systems in [14]. In the original ADER approach, high-order
accuracy in time is achieved by using the Cauchy–Kowalevsky
procedure to replace time derivatives with spatial derivatives.
This procedure is very efficient for linear problems [15], but
becomes cumbersome for non-linear problems. Moreover, this
procedure cannot deal with stiff source terms. To tackle these
shortcomings, an alternative ADER approach was introduced by
Dumbser et al. [16]. In this approach, the Cauchy–Kowalevsky
procedure is replaced by an implicit solution of a cell-local space–
time weak formulation of the PDE. This removes the problem de-
pendency of the approach and allows the handling of stiff source
terms. ExaHyPE provides an implementation of both ADER-DG
variants.

In non-linear hyperbolic PDE systems, discontinuities and
steep gradients can arise even from smooth initial conditions.
High-order methods may then produce spurious oscillation which
decrease the approximation quality and may even render the
computed solution unphysical. To remedy this issue, a wide range
of limiters for DG schemes have been proposed. Notably, these
include approaches based on artificial viscosity [17,18], filter-
ing [19] and WENO- or HWENO-based reconstruction [20,21]. The
approach taken within the ExaHyPE engine is multi-dimensional
optimal-order-detection (MOOD). This approach was initially ap-
plied to finite volume schemes [22–24] and has recently been
extended to DG schemes [25]. In this approach, the solution
is checked a-posteriori for certain admissibility or plausibility
criteria and is marked troubled if it does not meet them. Troubled
cells are then recalculated with a more robust finite volume
scheme. The MOOD approach bypasses limitations of a-priori

detection of troubled zones. We identify problematic regions after
each time step and roll back to a more robust scheme on demand.
This means that we do not need to reliably know all areas with
issues a-priori. This approach allows for good resolution of shocks
and other discontinuities [26].

The restriction to an adaptive cartesian mesh represents one
of ExaHyPE’s fundamental design choices. Problems are discre-
tised on tree-structured fully adaptive Cartesian meshes provided
by the Peano framework [27,28]. Dynamical adaptive mesh re-
finement (AMR) enhances the shock-capturing abilities of the
ADER-DG scheme further [29] and allows good resolution of local
features. ExaHyPE allows for complex geometry, either handled
by a curvilinear mesh transformation, or by a diffuse interface
approach. While the former approach is linear operation it is
restricted to geometries that can be mapped smoothly to a cube.
The latter approach extends a given PDE system by a parameter
representing the volume fraction of material in the cell and
thus determines the physical boundary through a diffuse inter-
face instead of boundary-fitted unstructured meshes. Complex
geometries can thus be readily represented and extensions to
moving geometries are also possible [2,30,31].

ExaHyPE comprises the following key features:

• High-order ADER discontinuous Galerkin (ADER-DG) with
a-posteriori subcell limiting and finite volume (FV) schemes;

• Dynamic mesh refinement on Cartesian grids in two and
three dimensions;

• A simple API that allows users to quickly realise complex
applications;

• User-provided code can be written in Fortran or C++;
• Automatically generated architecture- and application-

specific optimised ADER-DG routines;
• Shared memory parallelisation through Intel’s Threading

Building Blocks (TBB);
• Distributed memory parallelisation with MPI.

Furthermore, ExaHyPE offers a wide range of post-processing and
plotting facilities such as support for the output formats vtk or
tecplot. The software can be compiled with Intel and GNU com-
pilers and provides a switch for choosing different compilation
modes: The release mode aggressively optimises the application,
while the assertion and debug compilation modes activate the
assertions within the code and print additional output. Users
and developers can write log filters to filter output relevant to
them. For continuous testing a Jenkins server [32] verifies that
the code compiles with all parallelisation features in all differ-
ent compilation modes including its ability to resolve complex
geometries.

Our paper starts with an overview of the problem setting using
several examples. We then briefly sketch the solution methods
used in ExaHyPE, focusing on the ADER-DG algorithm. Next we
use a simple example to demonstrate the workflow when using
ExaHyPE and describe the engine architecture. We conclude with
a sequence of numerical examples from various application areas
to demonstrate the capabilities of the engine.

2. Problem formulation

We consider hyperbolic systems of balance laws that may
contain both conservative and non-conservative terms. They have
to be given in the following first-order form:

∂

∂t
Q + ∇ · F (Q , ∇Q ) + B(Q ) · ∇Q = S(Q ) +

nps∑
i=1

δi, (1)

where Q : Ω ⊂ Rd
↦→ Rν is the state vector of the ν conserved

variables, Ω ⊂ Rd is the computational domain, F (Q ) is the flux
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tensor that may also depend on the gradient of Q in order to
model viscous effects, and B(Q ) represents its non-conservative
part. Finally, S(Q ) is the source term and δi are the given nps point
sources.

Hyperbolic systems in the form (4) can be used to model a
wide range of applications that involve waves. In the following,
we demonstrate the versatility of our formulation by introduc-
ing equations from three different application areas. Numerical
experiments for these examples are provided in Section 6.

2.1. Waves in elastic media

Linear elastodynamics describes waves propagating through
elastic heterogeneous media by relating displacements, velocities,
stress and strain. The momentum equations of motion are derived
from Hooke’s law and the conservation of momentum. Following
the form of Eq. (4) we write them as

∂

∂t

(
σ

ρv

)
  

=Q

+

(
E(λ, µ) 0

0 0

)
· ∇

(
v

σ

)
  

=B(Q )·∇Q

+∇ ·

(
0
σ

)

=F (Q )

= 0,

where ρ denotes the mass density, v the velocity and the σ stress
tensor, which can be written in terms of its six independent
components as σ = (σxx, σyy, σzz, σxy, σxz, σyz). In this paper
we consider isotropic materials, i.e. the material matrix E(λ, µ)
depends only on the two Lamé constants λ and µ of the material.
However, the formulation holds also for more general anisotropic
materials.

These equations can be used to simulate seismic waves, such
as those radiated by earthquakes. In this context the restric-
tion of ExaHyPE to Cartesian meshes seems to be restrictive.
However, adaptive Cartesian meshes can be extended to allow
the modelling of complex topography. Two methods have been
implemented in ExaHyPE to represent complex topographies.
The first approach treats ExaHyPE’s adaptive Cartesian mesh as
reference domain that is mapped to a complex topography via
high-order curvilinear transformations [33,34]. The second ap-
proach, a diffuse interface method, represents the topography as
a smooth field [2]. These approaches are described in more detail
in Section 6.2.

2.2. Shallow water equations

In atmospheric and oceanic modelling of coastal areas, hor-
izontal length scales are typically significantly greater than the
vertical length scale. In this case, fluid flow can be modelled with
the two-dimensional shallow water equations instead of the more
complicated three-dimensional Navier–Stokes equations.

Following the form of Eq. (4) they can be written as

∂

∂t

⎛⎜⎝ h
hu
hv
b

⎞⎟⎠
  

=Q

+∇ ·

⎛⎜⎝ hu hv
hu2 huv
huv hv2

0 0

⎞⎟⎠
  

=F (Q )

+

⎛⎜⎝ 0
hg ∂x(b + h)
hg ∂y(b + h)

0

⎞⎟⎠
  

=B(Q )·∇Q

= 0, (2)

where h denotes the height of the water column, (u, v) the
horizontal flow velocity, g the gravity and b the bathymetry.

Hyperbolic systems of balance laws have non-trivial equilib-
rium solutions in which flux and source terms cancel. A well-
balanced numerical scheme is capable of maintaining such an
equilibrium state. In Section 3 we describe the ADER-DG scheme
used in ExaHyPE and in Section 6 we will describe how to keep
the scheme well balanced while allowing wetting and drying.

2.3. Compressible Navier–Stokes equations

ExaHyPE is extensible to non-hyperbolic equations. As an ex-
ample of such an extension we show the compressible Navier–
Stokes equations. They are used to model the dynamics of a
viscous fluid, and are given by

∂

∂t

(
ρ

ρv

ρE

)
  

=Q

+∇ ·

(
ρv

v ⊗ ρv + Ip + σ (Q , ∇Q )
v · (IρE + Ip + σ (Q , ∇Q )) − κ∇(T )

)
  

=F (Q ,∇Q )

=

( 0
−gkρ

0

)
  

=S(Q )

, (3)

where ρ denotes the density, ρv the momentum, ρE the energy
density, T the temperature and p the pressure (this term includes
gravitational effects). The temperature diffusion is given by κ∇T
with constant κ , these effects depend on the gradient of Q . In the
source term, the vector k is the unit vector in z-direction and g is
the gravitation of Earth. The viscous effects are modelled by the
stress tensor σ (Q , ∇Q ). Thus, the flux from (4) has been modified
to allow ∇Q as input. More details on the implementation of
these equations can be found in [35].

2.4. General relativistic magneto-hydrodynamics

The equations of classical magnetohydrodynamics (MHD) are
used to model the dynamics of an electrically ideally conducting
fluid with comparable hydrodynamic and electromagnetic forces.
When modelling astrophysical objects with strong gravitational
fields, e.g. neutron stars, it becomes necessary to model the
background space–time as well. We use the standard 3 + 1 split
to decompose the four dimensional space–time manifold into
3D hyper-surfaces parameterised by a time coordinate t . The
background space–time is introduced into the equations in the
form of a non-conservative product.

Following the form of Eq. (4) they can be written as

∂

∂t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
γD

√
γ Sj√
γ τ

√
γ Bj

φ

αj
β

γm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

Q

+∇ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αviD − β iD
αT i

j − β iSj
α(S i − viD) − β iτ

(αvi
− β i)Bj

− (αvj
− β j)Bi

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

=F (Q )

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

γ (τ∂jα −
1
2T

ik∂jγik − T j
i ∂jβ

i)
√

γ (S j∂jα −
1
2T

ikβ j∂jγik − T j
i ∂jβ

j)
−β j∂i(

√
γ Bi) + α

√
γ γ ji∂iφ

√
γαc2h∂j(

√
γ Bi) − β j∂ jφ

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  

=B(Q )·∇Q

= 0,

where i, j = 1, 2, 3 and m = 1...6.
The curved space–time is parameterised by several hyper-

surface variables: lapse α, spatial metric tensor γ shift vector β

and extrinsic curvature K . The spatial metric tensor is given as
a vector of its six independent components γ = (γ11, γ12, γ13,

γ22, γ23, γ33) and has the determinant
√

γ := det γ . Further,
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Table 1
An overview of the main kernels implementing the algorithm, all are
implemented for 2D and 3D and in linear and non-linear versions.
ADER-DG

spaceTimePredictor Linear: Cauchy–Kowalevsky,
Nonlinear: weak element-local space–time DG

Integrals Implements face, surface, and volume
integration

FV

Godunov Implements the Godunov FV scheme
MUSCL-Hancock Implements the MUSCL-Hancock FV scheme
slopeLimiter Various slope limiters , default: minmod

Both (ADER-DG + FV)

solutionUpdate Updates the solution vector
riemannSolver Riemann solver, default: Rusanov
stableTimeStepSize Calculates next stable time step size

Limiter

projectOnFVLimiterSpace Projects DG solution on FV subcells
projectOnDGSpace Projects FV solution back onto DG grid
discreteMaximumPrinciple Limiter criterion, checks discrete maximum

principle

D = Wρ is the conserved density, which is related to the
rest mass density ρ by the Lorentz factor W , vi is the fluid
velocity, T is the Maxwell 3-energy momentum tensor, S is the
conserved momentum, B is the magnetic field and τ is the con-
served energy density. Finally, φ is an artificial scalar introduced
to ensure a divergence-free magnetic field, and ch is the charac-
teristic velocity of the divergence cleaning. For more details on
this formulation see e.g. [36–38].

3. Solver components

In ExaHyPE’s engine concept the numerical method is given
and in general the user does not need to interact with any solver
components. A layer of generated glue code separates the user
from the kernel calls. The main kernels are given in Table 1, of
these only the slope-limiter and Riemann solver can be modified
by the user. However, all modifications to the kernels are optional
since stable defaults are provided. This section briefly summarises
the numerical algorithms used. For brevity, let us use a pared
down form of (4), in which only the flux term is nontrivial:
∂Q
∂t

+ ∇ · F (Q ) = 0 on Ω ⊂ Rd, d = 2, 3. (4)

Assume that (4) is subject to appropriate initial and boundary
conditions:

Q (x, 0) = Q0(x), ∀x ∈ Ω,

Q (x, t) = QB(x, t), ∀x ∈ ∂Ω, ∀t ∈ R+

0 .

3.1. Discretisation

ExaHyPE allows for Cartesian grids in two and three dimen-
sions. The computational domain is divided into a grid Ω =

⋃
i Ti

using a space-tree construction scheme [27,39]. Each cell Ti is
recursively refined giving an adaptive Cartesian grid as shown
in Fig. 1. Meshes can be defined with an arbitrary number of
elements in each direction on the coarsest level. Refinement is
based on tripartitioning.

The rationale behind a commitment to tripartitioning is two-
fold. On the one hand, we rely on the Peano AMR framework [39]
which internally orders all cells along a Peano space-filling curve.
This yields a high temporal and spatial locality of the cell and face
accesses; a property the Peano curve shares with other space-
filling curves. However, the Peano curve also allows us to realise

all temporary data structures through cache-friendly stacks [27].
On the other hand, tripartitioning is an intrinsic match for patch-
based Finite Volume methods which work with odd numbers of
volumes per axis: A subdivision of a cell here makes a former
volume centre coincide with a volume centre on the next finer
level. This simplifies the structure of inter-resolution transfer
operators and preserves them over many resolution levels.

3.2. Finite volumes

Classically systems of hyperbolic PDE have been solved using
finite difference or finite volume schemes. In a finite volume
method cell averages are calculated. Volume integrals in a PDE
that contain a divergence term are converted to surface integrals
using the divergence theorem. These terms are then evaluated
as fluxes at the surfaces of each element. However, to achieve
high order accuracy in a finite volume scheme, large stencils
and expensive recovery or reconstruction procedures are needed.
Examples include essentially non-oscillatory (ENO) or weighted
ENO (WENO) schemes, see e.g. [40,41].

As shown in Table 1 ExaHyPE provides access to classical
Godunov type schemes as well as MUSCL schemes [42,43]. Fur-
ther, users can use parts of the generic compute routines while
implementing other parts on their own. For instance, in both the
ADER-DG and Finite Volume schemes, users can overwrite the
Riemann Solver with their own implementation.

3.3. ADER-DG

Instead of representing the solution as cell averages, DG meth-
ods represent the solution within each cell by a (high-order) poly-
nomial. The ADER-DG method is a one-step predictor–corrector
scheme. The integration in time is initially performed only within
the element, neglecting the element interfaces and then a single
correction step is performed to take the element interfaces into
account [44].

The method operates on a weak form of Eq. (4)∫
Ti

∫ tn+1

tn
θh

∂qh
∂t

dxdt +

∫
Ti

∫ tn+1

tn
θh ∇ · F (qh) dxdt = 0. (5)

This formulation has replaced the solution Q with a discrete
function qh, represented by Lagrange polynomials θh in time and
space. This solution is referred to as the space–time predictor and
intuitively corresponds to a Taylor-expansion in space and time.
Hence, it is equal to the time-evolution of the discrete solution
within the control element for a smooth solution. The space–
time test function is in the space of piecewise polynomials, which
is constructed as tensor products of Lagrange polynomials over
Gauss–Legendre or Gauss–Lobatto points.

Integrating over each element Ti and over the current time
interval [tn, tn+1

] then gives the element-local weak formulation.
Note that the formulation does not take into account any informa-
tion from neighbouring elements. The predictor is subsequently
corrected using contributions from neighbouring cells using a
Riemann-solver.

However, first we need to compute qh. This can be evaluated
directly by the Cauchy–Kovalevsky algorithm for linear problems.
For non-linear models, we use the ADER-DG method proposed by
Dumbser et al. [45]. It is a fixed-point iteration and can be seen
as a discrete counterpoint to the well-known Picard iteration,
see [26]. There are three phases per ADER-DG time step:

1. Per grid cell Ti and time interval [tn, tn+1
], we first implic-

itly solve (5), predicting the local evolution. The concurrent
solves of (5) do not take into account any information from
neighbouring elements and thus yield jumps along the cell
faces in qh and F (qh).
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Fig. 1. Left: Adaptive Cartesian mesh in 3 dimensions. The FV limiter is active on the finest level. Right: Peano space-filling curve running through a 2D mesh that
has a similar refinement pattern.

2. We traverse all faces of the grid and compute a numerical
normal flux G(qh, F (qh)) from both adjacent cells. ExaHyPE
uses a Rusanov flux by default; users can replace it with
any other Riemann solver.

3. In the corrector step, we traverse the cells again and solve∫
Ti

θh ∆qh dx = −

∫
Ti

∫ tn+1

tn
∇θh · F (qh) dxdt

+

∫
∂Ti

∫ tn+1

tn
θh G(qh, F (qh)) dsdt (6)

for ∆qh = qh(tn+1) − qh(tn), see [16]. The one-step update
(6) is derived by multiplying with a spatial testfunction and
partially integrating (4). Eq. (6) can be easily inverted given
that the ansatz and test space typically yield a diagonal
mass matrix.

3.4. Time-step restrictions

Nonlinear effects and mesh adaptation require adjustments to
the time step size during a simulation. This is expressed by the
CFL condition, which gives an upper bound on the stable time
step size for explicit DG schemes:

∆t ≤
CFLN

d (2N + 1)
h

|λmax|
, (7)

where h and |λmax| are the mesh size and the maximum signal
velocity, respectively, and CFLN < 1 is a stability factor that
depends on the polynomial order [16].

3.5. A-posteriori limiting

The unlimited ADER-DG algorithm will suffer from numerical
oscillations (Gibbs phenomenon) in the presence of steep gradi-
ents or shock waves. Therefore a limiter must be applied. The
approach followed in ExaHyPE is based on the a-posteriori MOOD
method of Loubère et al. [25]. The solution is checked a-posteriori
for certain admissibility or plausibility criteria and is recalculated
with a robust FV scheme if it does not meet them. The FV patch
size is chosen to have an order of 2N + 1, this is the smallest cell
size that does not violate the CFL condition (7).

In contrast to the original approach, ExaHyPE’s approach in-
corporates the observation that cells usually require a recalcula-
tion with FV multiple time steps in a row after the initial check
failed. Therefore, ExaHyPE implements the a-posteriori limiting
ADER-DG method as a hybrid ADER-DG-FV method (Fig. 2).

As a-posteriori detection criteria we use

1. Physical Admissibility Criteria: Depending on the system
of PDEs being studied certain physical constraints can be
placed on the solution. For the shallow water equations
these are positivity of the water height. These criteria are
supplied by the user along with the PDE terms.

2. Numerical Admissibility Criteria: To identify shocks we use
a relaxed discrete maximum principle (DMP) in the sense
of polynomials, for details see e.g. [25].

We call DG cells that do not satisfy the above criteria troubled
cells. If a cell is flagged as troubled and has not been troubled in
the previous time step, the scheme goes back to the old time step
and recomputes the solution in all troubled cells (and their direct
neighbours) with the FV scheme.

4. Engine architecture and programming workflow

This section briefly walks through the workflow of setting
up an application in ExaHyPE using the shallow water equations
given in (2) as an example. The architecture of ExaHyPE is illus-
trated in Fig. 3. ExaHyPE is a solver engine, domain-specific code
has to be written by the user to obtain simulation code. In Fig. 3 a
turquoise colour is used to highlight files written by the user. To
write an ExaHyPE application users typically start from a specifi-
cation file. The specification file is passed to the ExaHyPE toolkit,
which creates glue code, empty application-specific classes and
optionally application and architecture tailored core routines. The
application specific classes are filled by the user with the PDE
terms. This code can be written in C++ or Fortran. The generated
glue code and the initially empty templates make up the ExaHyPE
user solver.

The ExaHyPE core relies on the Peano framework (green) for
its dynamically adaptive Cartesian meshes. In addition, it provides
an efficient mesh traversal loop that ExaHyPE’s algorithms plug
into. Peano itself is a third-party component.

The number of dependencies in the ExaHyPE core is minimal.
However, the architecture may not fulfil the requirements of all
applications, so the user can extend and connect further software
fragments to the ExaHyPE core. In red we show an optional de-
pendency, libxsmm [46]. This package provides efficient kernels
for small matrix multiplications, which are used by the optimised
ADER-DG routines described in Section 5.2. Similarly, further
software packages can be added by the user as needed.

In Table 2, a brief summary of the components of the user
solver is given. In the following Section we highlight the parts
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Fig. 2. Left: Limiter status stencil. Two FV cells (red) are surrounded by (ADER-)DG cells (white). Cells in the interface layers compute with FV and project to DG
(orange) or with DG and project to FV (yellow). Right: The FV and DG subdomains are initialised along a discontinuity. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Engine architecture.

of the specification file that need to be modified for each com-
ponent and show the implementation of the user functions for
the shallow water equations. The solver components can be set
up flexibly by modifying the specification file. Users only need to
write application-specific code that sets up their PDE system.

4.1. Code generation and compilation

After the specification file has been written it is handed over
to the ExaHyPE toolkit. A minimal ExaHyPE specification file is
shown below.

exahype-project SWE
output-directory const = ./SWE

computational-domain
dimension const = 2
width = 1.0, 1.0
offset = 0.0, 0.0
end-time = 1.0

end computational-domain

solver ADER-DG MySWESolver
variables const = h:1,hu:1,hv:1,b:1
order const = 3
maximum-mesh-size = 0.1

Table 2
An overview over the optional and required user-implemented functions.
Required functions

adjustPointSolution Set values in the state vector.
Required: initial values. Optional: constraints

eigenvalues Eigenvalues to calculate time step restriction
boundaryValues Define boundary conditions

Problem-dependent functions

flux Flux function
nonConservativeProduct Non-conservative products
source, pointSource Source terms
multiplyMaterialParameter-
Matrix

Material parameters

viscousFlux Flux terms with access to gradients
viscousEigenvalues Eigevalues for time step restriction in viscous

terms

Optional functions

init Initialisation of external libraries
refinementCriterion Only for applications with AMR

define additional areas to refine
isPhysicallyAdmissable Only for applications with Limiter

Gives physical admissibility criteria

time-stepping = global
type const = non-linear
terms const = flux,ncp
optimisation const = generic, usestack

end solver
end exahype-project

To prepare this example for the simulation, run

> ./Toolkit/toolkit.sh Demonstrators/SWE.exahype

The toolkit generates a Makefile, glue code, as well as var-
ious helper files. Among them is one C++ class per solver that
was specified in the specification file. Within each implementa-
tion file, the user can specify initial conditions, mesh refinement
control, etc. For example, to set the eigenvalues the following
function is generated in the file MySWESolver.cpp.

void SWE::MySWESolver::eigenvalues(const double* const Q,
const int direction,
double* const lambda) {

// @todo Please implement/augment if required
lambda[0] = 1.0;
lambda[1] = 1.0;
lambda[2] = 1.0;
lambda[3] = 1.0;

}



A. Reinarz, D.E. Charrier, M. Bader et al. / Computer Physics Communications 254 (2020) 107251 7

This function can then be filled with the eigenvalues of the PDE
system under consideration. Similarly, the other functions flux,
initial conditions and boundary conditions can be defined in the
file. For the shallow water equations this would be:

void SWE::MySWESolver::eigenvalues(const double* const Q,
const int direction,
double* const lambda) {

ReadOnlyVariables vars(Q);
Variables eigs(lambda);

const double c = std::sqrt(gravity*vars.h());
double u_n = Q[direction + 1] * 1.0/vars.h();

eigs.h() = u_n + c;
eigs.hu() = u_n - c;
eigs.hv() = u_n;
eigs.b() = 0.0;

}

In this example we have used named variables to enhance read-
ability. However, ExaHyPE also allows the user to access the
vectors directly as can be seen in the generated function above.

The whole build environment is generated. A simple make
will create the ExaHyPE executable. ExaHyPE’s specification files
always act as both specification and configuration file, i.e. when
running the code the specification file is passed in again.

> ./ExaHyPE-SWE ./SWE.exahype

A successful run yields a sequence of vtk files that you can
open with Paraview or VisIt. In this example, we plot two quan-
tities. Such an output is shown in Fig. 4.

Global metrics such as integrals can also be realised using a
plotter with no output variables, i.e. variable const = 0.

5. Parallelisation and optimisation features

ExaHyPE relies on the Peano framework for mesh generation.
Peano implements cache-efficient, tree-structured, adaptive mesh
refinement. To traverse the cells or vertices the mesh traversal
automaton of Peano runs along the Peano space-filling-curve
(SFC), see Fig. 1. The action of a PDE operator is mapped to the
SFC traversal by plugging into events triggered by the traversal
automaton, these mappings can be generated by a toolkit.

Peano also takes care of the distributed-memory and shared-
memory parallelisation. Domain decomposition for distributed-
memory parallel simulations is realised by forking off or
merging subtrees. The domain decomposition can be influenced
via load balancing callbacks. The shared-memory parallelisation
relies on identifying regular substructures in the tree and employ-
ing parallel-for loops in these areas [48]. Recently, we introduced
a runtime tasking system to Peano and ExaHyPE that introduces
additional multi-threading concurrency [49] in highly adaptive
mesh regions and allows overlapping computations with MPI
communication.

ExaHyPE builds on the Peano framework and it inherits a
user model from Peano: Our engine removes the responsibility
for algorithmic issues from the user. The time step, the mesh
traversal and the parallelisation are implemented in a generic
way. The user only controls the PDE system being solved, by
specifying how many quantities are needed, which terms are
required, and ultimately what all terms look like. Our goal is to
allow users to focus on the physics only and to hide away as many
implementation details as possible.

5.1. High-level optimisations

ExaHyPE contains several high level algorithmic optimisations
that users can switch on and off at code startup through the
specification file. To gain access to these optimisations, we add
the following optional section to the minimal specification file
shown in Section 4.

global-optimisation
fuse-algorithmic-steps = all
spawn-predictor-as-background-thread = on
spawn-amr-background-threads = on

end global-optimisation

A discussion of each individual algorithmic tuning is beyond
scope of this paper. Some techniques are:

• Step fusion: Each time step of an ExaHyPE solver consists
of three phases: computation of local ADER-DG predictor
(and projection of the prediction onto the cell faces), solve
of the Riemann problems at the cell faces, and update of the
predicted solution. We may speed up the code if we fuse
these four steps into one grid traversal.

• Spawn background jobs: TBB has a thread pool in which
idle threads wait for tasks, as soon as new tasks are spawned
the threads in this pool start this task. We refer to these
threads as background threads. Since spawning and schedul-
ing these tasks has a overhead we wait until a certain
number of tasks has accumulated and schedule these tasks
together. Certain space–time-predictor computations can be
spawned as a background job. Costly AMR operations such
as the imposition of initial conditions and evaluation of
refinement criteria can also be performed as a background
jobs.

• Modify storage precision: ExaHyPE internally can store
data in less-than-IEEE double precision. This can reduce the
memory footprint of the code significantly.

Most users will not modify these options while they prototype.
When they start production runs, they can tweak the engine
instantiation through them. The rationale behind exposing these
control values is simple: It is not clear at the moment which
option combinations robustly improve performance. An auto-
tuning/machine learning approach to find the optimal parameter
combinations could be considered.

ExaHyPE allows running multiple simulations on the same
computational mesh. This can be facilitated by adding multiple
solver descriptions to the specification file. Each solver uses its
own base grid and refinement criterion.

5.2. Optimised ADER-DG routines

One of ExaHyPE’s key ideas is to use tailored, extremely opti-
mised code routines whenever it comes to the evaluation of the
ADER-DG scheme’s steps and other computationally expensive
routines. AMR projections and the space–time predictor (5) are
typically the dominant steps. If the user decides to use these
optimised variants in the specification file, the toolkit calls a
specific code generator Python3 module and links to its output in
the generated glue code so that the calls to the generic routines
are replaced by calls to the generated optimised ones.

SIMD operations, notably introduced with AVX-512 on KNL
and Skylake, become increasingly critical to fully exploit the
potential of modern CPUs. Therefore, on Intel machines, the opti-
mised routines’ main goal is to either directly use SIMD or enable
as much auto-vectorisation from the compiler as possible. To that
end the optimised routines use Intel’s libxsmm [46], which is
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Fig. 4. Vtk output of a shallow water simulation of the Tohoku tsunami. Left: FV and DG domains. Right: the tsunami 5 min after the initial event.
Source: These figures are taken from [47].

the second third-party building block in the basic ExaHyPE archi-
tecture. We map all tensor operations required by the ADER-DG
algorithm to general matrix multiplications (gemms) and apply
architecture-specific vectorised matrix operations. Furthermore,
the code generation allows the introduction of data padding and
alignment to get the most out of the compiler auto-vectorisation.

While improving SIMD vectorisation is our current prime use
case for the optimised kernels, we provide alternative optimisa-
tion dimensions: Instead of a vectorisation of the native ADER-DG
loops, the optimised routines can also be configured to work with
vectorised PDE formulations. This implies that the PDE terms are
computed through SIMD operations instead of scalar ones and
requires some work from the user. This has been found to greatly
improve performance [50].

Instead of the standard Picard iteration, we provide a contin-
uous extension Runge–Kutta scheme (CERK) to yield an initial
guess to the Picard iteration, leading to a much lower number
of required iterations.

6. Numerical results

In this section, we show the ExaHyPE engine in action. The
applications in this section are taken from our introductory dis-
cussion in Section 2. Only the Euler equations are added as an
all-time classic starting point for solvers of hyperbolic systems.
All specification and source files used to generate the results
in this section are made publicly available, and all of the tests
themselves can be run on a standard laptop. The scaling tests
shown require the use of a larger cluster.

6.1. Euler equations

The non-linear compressible Euler equations model the flow
of an inviscid fluid with constant density. Solutions of the Euler
equations are sometimes used as approximations to real fluids
problem, e.g. the lift of a thin airfoil. They are given by

∂

∂t

(
ρ

j
E

)
+ ∇ ·

⎛⎝ j
1
ρ
j ⊗ j + pI
1
ρ
j (E + p)

⎞⎠ = 0, (8)

where ρ denotes the mass density, j ∈ Rd denotes the momen-
tum density, E denotes the energy density, p denotes the fluid
pressure, to be given by an equation of state, and ⊗ denotes the
outer product.

We extend the model by a colour function denoting the vol-
ume fraction of material in a cell starting from the Baer–Nunziato
model [51]:

∂

∂t

⎛⎜⎝αρ

αj
αE
α

⎞⎟⎠+ ∇ ·

⎛⎜⎜⎝
αj

α
ρ
j ⊗ j + αpI
α
ρ
j (E + p)

0

⎞⎟⎟⎠+

⎛⎜⎝ 0
−p∇α

0
0

⎞⎟⎠ = 0, (9)

In the above PDE system α denotes the volume fraction of mate-
rial present. The pressure is given by:

p = (γ − 1)
(
E −

1
2ρ

∥j∥2
2

)
, (10)

where γ = 1.4 is the ratio of specific heats .
Note that the addition of α has introduced a non-conservative

term into the equation. In the above we have given a reduced
Baer–Nunziato model, similar to the approach presented in [2,30,
31,52]. This model allows simulation of fluid–structure-interaction
(FSI) problems on adaptive Cartesian grids, without requiring
boundary-fitted grids.

In Fig. 5 we present computational results for flow over a thin
airfoil. Initial conditions were:

j(x, 0) = (1, 0), ρ(x, 0) = 1.0, E(x, 0) = 2.5,

As boundary conditions we set an inflow boundary at the left,
an outflow boundary at the right and v · ∇n = 0 at the top
and bottom boundaries. Results are shown for a NACA 4612
airfoil [53]. The results generate the expected bow shock.

To demonstrate the shared-memory scalability of the code
we use a variant of the Sod shock tube problem, the circu-
lar, spherical explosion problem, also referred to as a ‘‘multi-
dimensional Sod shock tube’’. This test case uses the following
initial conditions

j(x, 0) = 0, ρ(x, 0) =

{
1 if ∥x − x0∥2 < r2,
1
8 else

,

E(x, 0) =

{
1 if ∥x − x0∥2 < r2,
1
10 else.

and wall boundary conditions.
In Fig. 6 we show the shared-memory scalability in two and

three dimensions. This scaling test was run on the 14 cores
of an Intel Xeon E5-v3 processor with 2.2 GHz core frequency
(SuperMUC Phase 2). The tests were run on one processor with
14 cores using Intel’s TBB [54] for parallelisation. We consider
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Fig. 5. An ADER-DG implementation of flow over an airfoil in 2D using a base grid of 79 × 25 cells. From left to right: The energy E at t = 0.03 and at t = 0.1.

Fig. 6. Shared-memory scalability of the non-linear ADER-DG implementation for a circular, spherical explosion problem experiments using a base grid with up to
two levels of adaptive refinement. Left: 2D test with a base grid of 812 cells. Right: 3D test with a base grid of 273 cells.

a regular base grid and allow a dynamic refinement criterion to
add up to two additional levels ∆ℓ ∈ {1, 2} of cells around the
shock front. In these tests all kernel level optimisations that are
available in ExaHyPE have been used. As a result, scalability is
more challenging, however, we are interested mainly in reducing
the overall run-time.

The scalability improves as the work per element increases,
i.e. it improves with higher polynomial degree N or for increasing
dimension. In general good scalability can be observed on up to
14 cores at higher orders. All ExaHyPE codes employ a hybrid
parallelisation strategy with at least two MPI ranks per node [55].
Results for this hybrid parallelisation strategy are provided in
Section 6.6.

6.2. Elastic wave equation

The restriction of ExaHyPE to Cartesian meshes seems restric-
tive in the context of most seismic applications. In this section,
we introduce two methods for incorporating complex geometries
into such a mesh without modifying the underlying numerical
method. We would like to highlight that both of these methods
omit manual mesh-generation, which is typically required as
a pre-processing step in computational seismology applications
and poses a major bottleneck. Hexahedral mesh generation can
easily consume weeks to months and is limited for complex ge-
ometries of boundary and interface conditions, while form-fitted
unstructured tetrahedral meshes allow for automatised mesh-
ing and complex geometries [56,57], however, pose numerical
challenges, e.g. in form of misshaped sliver elements [58].

6.2.1. Diffuse interface approach
As in the Euler equations we can extend the elastic wave

equation by a parameter α, which represents the volume fraction
of the solid medium present in a control volume [2]. Diffuse
interfaces completely avoid the problem of mesh generation,
since all that is needed for the definition of the complex surface

topography is to set a scalar colour function to unity inside the
regions covered by the solid and to zero outside.

The diffuse interface model is given by:

∂σ

∂t
− E(λ, µ) ·

1
α

∇(αv) +
1
α
E(λ, µ) · v ⊗ ∇α = 0,

∂αv

∂t
−

α

ρ
∇ · σ −

1
ρ

σ∇α = 0,

where E(λ, µ), λ, µ, ρ and the stress tensor σ are defined as
in Section 2.1.

The material parameters are assumed to remain constant, i.e.

∂α

∂t
= 0,

∂λ

∂t
= 0,

∂µ

∂t
= 0,

∂ρ

∂t
= 0.

Physically, α represents the volume fraction of the solid medium
present in a control volume. The equations become non-linear in
those regions in which 0 < α < 1.

This formulation can be extended to allowing moving materi-
als. Instead of solving dα

dt = 0, we can solve

dα
dt

+ v∇α = 0.

In this way the free surface boundary is allowed to move accord-
ing the local velocity field [2].

To verify the accuracy of this method we solve the layer over
homogeneous halfspace (LOH.1) benchmark problem described
by Day et al. [59]. This problem is a well-known reference bench-
mark for seismic wave propagation in numerical codes. The LOH.1
benchmark considers way propagation in a hexahedral geometry
filled with two materials that are stacked on top of each other.
The first material is characterised by a lower density and smaller
seismic wave speeds. The exact material parameters are defined
in Table 3. The parameters λ and µ of the equation can be derived
from these values.

A point source is placed 2 km below the surface at the centre
of the domain, such that the resulting wave propagates through
the change of material.
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Fig. 7. From left to right: Plot of the limited area indicated by α; The velocity field in x with the simulated topography in the background at t = 1.1(transparent
indicates the free surface). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Material parameters of the LOH.1 benchmark.
x cp[m/s] cs[m/s] ρ[kg/m3]

< 1 km 4000 2000 2600
≥ 1 km 6000 3464 2700

In the diffuse interface method we limit the free surface to
be able to resolve the local discontinuity of α. The left picture
in Fig. 7 shows the resulting distribution of limited (red) and
unlimited areas (blue) and indicates the transition of both (light
blue and red). The right picture shows the velocity field in x
direction at t = 1.1. Our implementation of the diffuse interface
method is able to successfully resolve both the changing material
parameters and the absorbing surface boundary conditions.

6.2.2. Curvilinear meshes
Our second approach models complex topographies by apply-

ing a curvilinear transformation to the elements of an adaptive
Cartesian mesh. To do so we generate surface quadrature nodes
depending on the topography, create a 2D curvilinear interpo-
lation of those quadrature nodes on domain boundaries with
topography curves and domain edges as constraints, and finally
generate a Jacobian mapping J at each node. Taking this mapping
into account, the linear elastic wave equations can be written as:

∂σ

∂x
=

1
J

(
∂

∂q
(Jqxσ) +

∂

∂r
(Jrxσ) +

∂

∂s
(Jsxσ)

)
∂v

∂x
= qx

∂v

∂q
+ rx

∂v

∂r
+ sx

∂v

∂s
where J is the Jacobian matrix of the mapping from mesh to
topography. This approach allows us to model meshes with com-
plex topographies including faults and inner branches [33,34].
The ADER-DG algorithm as described previously, can then be
applied directly to this version of the elastic wave equation.

Fig. 8 shows a snapshot of a numerical experiment that simu-
lates propagation of seismic waves in the area around the moun-
tain Zugspitze, in Germany. Both the curvilinear approach and
the diffuse interface method are able to resolve the complicated
topographies in this scenario which is motivated by the AlpArray
experiment.

Fig. 9 shows the shared-memory scalability of the linear ADER-
DG implementation on SuperMUC’s Phase 2 when running the

LOH.1 benchmark comparing the scalability of the two mesh-
ing approaches. We consider a regular base grid with 273 cells
and allow a dynamic refinement criterion to add one additional
level of cells to the layer over the halfspace. Memory constraints
prevented further refinement. As in the non-linear test case the
scalability improves as the work per element increases. However,
due to the lower amount of total work in the linear setting a
higher polynomial degree needs to be reached to attain scalability
in this case. This means that the overall scalability of the diffuse
interface approach is higher, however, this comes at the price of a
higher overall computational cost due to the non-linearity of the
formulation.

The question of which method should be used is highly prob-
lem dependent. The curvilinear method is purely linear and as
such computationally cheap. The non-linear diffuse interface ap-
proach, on the other hand, requires additional limiting on the
surface. However, the time step size for the DIM is independent
of the simulated topography, while in the curvilinear method it is
highly dependent on the distortion introduced by the topography.
Simulations with a relatively smooth, flat surface are expected
to be faster with the curvilinear method, while highly varying
topographies are better discretised with the DIM. DIM has the
added advantage of allowing moving free surface boundaries, a
feature that is difficult to realise with curvilinear meshes.

6.3. Shallow water equations

We demonstrate the dynamic mesh refinement capabilities of
ExaHyPE via the shallow water equations (2). Even more impor-
tantly, we present a non-toy problem which uses ExaHyPE’s 2D
facilities. To solve (2), we use the a-posteriori limiting ADER-DG
method and equip its FV limiter with a recently developed HLLEM
Riemann solver [60]. The solver allows for wetting and drying.
This also demonstrates that users can inject their own Riemann
solvers in ExaHyPE.

The same scenario is available in ExaHyPE using a Finite Vol-
ume scheme instead of an ADER-DG scheme with FV limiter
[47,61]. In both implementations the same Riemann solver can
be used. The Riemann solver considers a dry tolerance ϵ > 0
below which cells are marked as dry. The constant ϵ is necessary
to avoid negative water heights, which usually lead to unphysical
non-linear effects. If one of the cells is flooded the jump in
bathymetry is taken into account by the Riemann solver. When
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Fig. 8. Simulation of seismic waves around the Mount Zugspitze with curvilinear meshes. The internal Cartesian mesh (left) is used to simulate a complex topography
(right).

Fig. 9. Shared-memory scalability of the linear ADER-DG implementation on SuperMUC’s Phase 2 when running the LOH.1 benchmark. Left: Curvilinear elements
are used. Right: The diffuse interface method is used.

reconstructing the DG solution from the FV limiter the water
level is reconstructed first and then the bathymetry is subtracted.
This ensures that the non-linear reconstruction process does not
produce artificial waves. In tsunami simulations, this scheme
allows us to simulate areas close to the coast with the FV subcell
limiter, while areas in the deep ocean are processed by the high
order ADER-DG method.

To test the shallow water equations given in (2) we use the
oscillating lake scenario. Here, a water droplet travels in circular
motion over a dry basin. The topography of the basin is resolved
using the final variable b, which remains constant throughout the
simulation. The analytical solution, which is used as an initial
condition is given by

Q =

⎛⎜⎝ h
hu
hv
b

⎞⎟⎠

=

⎛⎜⎜⎜⎝
max

{
0, 1

10

(
x0 cos(ω · t) + x1 sin(ω · t) +

3
4

)
− b

}
1
2ω sin(ω · t)h
1
2ω cos(ω · t)h

1
10 (x

2
0 + x21)

⎞⎟⎟⎟⎠ ,

where ω =
√
0.2g and g = 9.81 denotes the gravitational con-

stant. The initial conditions are supplemented by wall boundary
conditions. In this setup we use polynomial order N = 3 and a
base grid of 7 × 7 elements. We adaptively refine mesh elements
where the water height is small but not zero. We allow up to two
levels of adaptive refinement.

This scenario provides a challenging test case for numerical
codes due to the continuous wetting and drying of cells. There
exists an analytical solution for this benchmark scenario allowing
us to verify the well-balancedness of a scheme, as well as in the
resolution of drying or inundated cells.

In the top row of Fig. 10, we plot the water height at t =

0, 1, 2, 3. Despite the frequent wetting and drying the scheme
performs well. In those areas in which the DG solution is used, we
note the accuracy of the higher order scheme on a coarse grid. In
those areas in which a FV solution is necessary, the dynamic AMR
is useful to retain accuracy and avoid diffusion. The bottom row
of Fig. 10 shows the locations in which the FV limiter is active
and adaptive mesh refinement is used. Furthermore, it shows the
error in the water height. We observe that the FV limiter is used
only in those cells in which it is required, the limiter locations
move with the solution. The error remains below 10−3 in all cells.

In Fig. 11, we show the shared-memory scalability for the
oscillating lake. This scaling test was run on one 2.2 GHz 14 core
Intel Xeon E5-v3 processor of SuperMUC Phase 2. We consider a
regular base grid and allow a dynamic refinement criterion to add
up to two additional levels of cells around the water droplet. In
this area the FV limiter is active. As in the previous test case the
scalability improves for higher polynomial degree N .

6.4. General relativistic magneto-hydrodynamics

To uncover and validate ExaHyPE’s high convergence order,
we require a test case which does not contain discontinuities,
as the limiter reduces the convergence order. Furthermore, the
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Fig. 10. ADER-DG with a-posteriori limiting for the oscillating lake scenario (shallow water equations). Top row: water height at time t = 0, 1, 2, 3. Bottom row:
The locations (red) in which the FV limiter is active, the adaptively refined mesh and the error at times t = 2 and 3. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Shared-memory scalability of the non-linear ADER-DG implementation
for the oscillating lake experiments using a base grid of 2432 cells with up to
two levels of adaptive refinement.

analytical solution has to be known. We simulate the spherical
accretion onto a stationary black hole. This well-known test case
has a known analytical solution [62]. Details of the setup in
the context of ADER-DG methods can also be found in [6]. This
setup is challenging since GRMHD is a non-linear equation of 19
variables containing both fluxes and non-trivial non-conservative
products. Further complexity arises from the closeness of the
singularity at the critical radius to the computational domain.

We use the analytical solution as the external state vector for
the Riemann solver at the boundary of the domain ∂Ω . The test

is performed in Kerr–Schild coordinates on the spatial domain
[2.2, 12.2]3, away from the critical radius.

In Fig. 12 we show the solution at time t = 1.0 and the
convergence of the error in terms of L1-norm for three different
polynomial degrees N = 2, 3 and 6. Table 4 lists L1-errors and
convergence order for each polynomial degree. This shows that
our scheme converges to the expected order of N + 1.

For the next test, we move to a simulation for which the
analytical solution is not known. In this test, a stable non-rotating
and non-magnetised neutron star is simulated in three space
dimensions by solving the GRMHD equations in the Cowling
approximation, i.e. assuming a static background spacetime. The
initial state has been obtained as a solution to the Tolman–
Oppenheimer–Volkoff (TOV) equations. The corresponding fluid
and metric variables are compatible with the Einstein field equa-
tions. We set the magnetic field to zero for TOV stars.

The TOV equations constitute a non-linear ODE system in
the radial space coordinate, that has been solved numerically by
means of a fourth order Runge–Kutta scheme on a very fine grid
with step size dr = 0.001. The parameters of the problem have
been chosen to be: ρc = 1.28 · 10−3, adiabatic exponent Γ = 2
and a constant atmospheric pressure patm = 10−12.

The star sits at the origin of the domain [−15, 15]3. We apply
reflection boundary conditions at the three simulation boundary
surfaces x = 0, y = 0 and z = 0. At the surfaces x = R, y = R and
z = R, we apply exact boundary conditions, evaluating the initial
data at the boundary.

In Fig. 13, we show the shared memory of scalability of the
non-linear hybrid ADER-DG — FV implementation of the GRMHD
equations for the TOV star run on SuperMUC phase 2. We con-
sider a regular base grid with 273 cells and allow a dynamic
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Fig. 12. (Left) The solution for pressure of the Michel accretion test at t = 1.0. (Right) Convergence of the ADER-DG scheme at t = 1.0. The dotted lines show the
expected convergence rates.

Fig. 13. Left: The TOV star setup showing two levels of adaptive mesh refinement along a sphere around the star. Right: Shared-memory scalability of the non-linear
hybrid ADER-DG — FV implementation when running the TOV star example.

refinement criterion to add one additional level of cells along a
sphere around the TOV star.

6.5. Compressible Navier–Stokes

The compressible Navier–Stokes equations (3) demonstrate
that ExaHyPE is not only able to solve hyperbolic PDEs, but is
also capable of handling viscous effects. We use the numerical
flux of [63] to integrate this into our ADER-DG framework.

To test the equations, we utilise the Arnold–Beltrami–Childress
(ABC) flow
ρ(x, t) = 1,

v(x, t) = exp(−1µt)

(sin(z) + cos(y)
sin(x) + cos(z)
sin(y) + cos(x)

)
,

p(x, t) = − exp(−2µt) (cos(x) sin(y) + sin(x) cos(z)
+ sin(z) cos(y)) + C,

where the constant C = 100/1.4 governs the Mach number and
µ = 0.01 is the viscosity [64]. This equation has an analytical
solution in the incompressible limit. We impose this solution at
the boundary. In Fig. 14 we show a comparison between the
analytical solution and a simulation with order N = 2 on a regular
mesh of 273 cells. We see a good agreement with the analytical
solution a time t = 1.0.

In addition, we evaluate our scenario for the colliding bub-
bles scenario of [65]. The initial conditions of this scenario are

Table 4
Convergence of the ADER-DG scheme for the Michel accretion test at t = 1.0.
#cells N = 2 N = 3 N = 6

Error L1 Order Error L1 Order Error L1 Order

33 2.56e−02 2.31e−02 3.23e−02
93 4.22e−03 1.65 2.27e−03 2.11 2.28e−05 6.45
273 4.66e−04 2.01 3.09e−05 3.91 6.24e−08 5.52
813 4.06e−05 2.21 4.47e−07 3.86 1.09e−11 7.88

obtained by an atmosphere with a background state that is in
hydrostatic balance, i.e. where
∂

∂z
p(z) = −gρ(z).

Initially, the domain has the same potential temperature Θ . This
is then perturbed by

Θ ′
=

{
A r ≤ a,

A exp
(
−

(r−a)2

s2

)
r > a,

where r is the Euclidean distance from the centre of the bubble
(xc, zc) and the spatial position (x, z). We have two bubbles, with
constants

warm: A = 0.5, a = 150m, s = 50m,

xc = 500m, zc = 300m,

cold: A = −0.15, a = 0m, s = 50m,

xc = 560m, zc = 640m.
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Fig. 14. Left: Pressure of the ABC-flow, x-y slice. Right: Velocity slices of the ABC-flow. Markers indicate samples of our solution, line indicates analytical solution.
Source: Image reproduced from [35].

Fig. 15. Left: The colliding bubble scenario with two levels of dynamic adaptive mesh refinement. Image taken from [35] Right: Shared-memory scalability of the
nonlinear ADER-DG implementation when running the ABC-flow example with viscous effects.

The simulation runs for 600 s and uses a viscosity of µ = 0.01 for
regularisation. We use order N = 5 and a mesh with up to two
adaptive AMR levels. The results of this simulation are shown in
Fig. 15 (left). There is an excellent agreement with the reference
solution of [65]. For further details on the setup, we refer to [35].
In Fig. 15 (right), we show the shared-memory scalability using
the ABC-flow on SuperMUC phase 2. In this test case the shared
memory scalability is very good for all tested polynomial orders.

6.6. Hybrid parallelisation strategy

In the previous sections we showed the shared memory scal-
ability of various test cases in two and three dimensions. In
general we observed that the scalability improves as the work per
element increases, i.e. it improves with higher polynomial degree
N , for increasing dimension, or PDE complexity. In this section we
demonstrate the effectiveness of a hybrid parallelisation strategy
using the GRMHD TOV star setup described in Section 6.4. We
consider a regular base grid of 793 cells and allow up to two
levels of adaptive mesh refinement. As before all kernel level
optimisations have been switched on.

This scaling test was run on up to 56 nodes of SuperMUC
Phase 2 consisting of two 2.2 GHz 14 core Intel Xeon E5-v3
processors each. The tests were run using both Intel’s TBB and
MPI for parallelisation. As a reference value we use a test run
on 56 cores and calculate the corresponding parallel efficiency
compared to this baseline. Table 5 contains the results of this
strong scaling test. Here, efficiency measures the speedup ob-
tained divided by the expected optimal speedup. The efficiency

Table 5
Hybrid scaling of the GRMHD application. A N = 6 ADER-DG approximation plus
Finite Volumes limiting is used. Up to two levels of adaptive mesh refinement
are employed.
# cores (nodes) Threads Regular ∆l = 1 ∆l = 2

Time Efficiency Time Efficiency Time Efficiency

56 (2) 14 91.93 1.00 139.43 1.00 395.90 1.00
112 (4) 7 37.68 1.22 57.03 1.29 151.11 1.31
224 (8) 4 30.88 0.77 34.17 0.89 139.42 0.93
448 (16) 2 17.67 0.43 26.66 0.65 57.02 0.85
784 (28) 1 13.88 0.32 22.89 0.44 34.17 0.67

is over 1.0 in some cases can be explained by the chosen baseline
of 56 cores.

7. Conclusions and future work

This paper introduces a software engine that allows users
to write higher-order ADER-DG codes for hyperbolic PDE sys-
tems with both conservative and non-conservative terms and
a-posteriori limiters. The engine, ExaHyPE, has been designed to
work on a wide range of computer systems from laptops to large
high-performance compute clusters. Its core vision is to provide
an engine rather than a framework: Technical details both on
the computational science and numerical side are hidden from
the user. A specification file plus very few routines realising the
PDE terms are typically the only customisation points modified
by user codes. Users can focus on the physics. To achieve this
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high level of abstraction, writing code in ExaHyPE requires the
use of a pre-specified set of numerical methods. The code thus
clearly stands in the tradition of software packages such as Claw-
pack [66], as opposed to more generic, general-purpose software
packages such as AMReX, deal.II or DUNE.

There are three general directions for future work. First, the
sketched application areas have to make an impact in their re-
spective domain. This comprises application-specific performance
engineering and studies of real-world setups and data. It notably
also comprises the coupling of engine applications with other
code building blocks. Examples for first work into this direction
are [2,33,34]. Second, we have to continue to investigate and to
invest into the methods under the hood of ExaHyPE. Examples
for such new ingredients on our agenda are accelerator support,
local time stepping, and more dynamic load balancing and auto-
tuning [67,68]. Finally, we plan extensions of the core paradigm
of the engine. The development of ExaHyPE from scratch has been
possible as we restricted ourself to ADER-DG only. In the future,
we plan to elaborate to which degree we are able to add particle-
based (Particle-in-Cell methods or simple tracers) algorithms or
multigrid solvers (for elliptic subterms) on top of ExaHyPE. This
will open new user communities to the engine. First feasibility
studies for this [69–71] already exist.
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Appendix A. Dependencies and prerequisites

ExaHyPE requires the following prerequisites:

• For sequential simulations, only a C++ compiler is required.
The code uses only few C++14 features, but for many older
versions enabling those features through --std=c++0x is
required.

• Python 3
• ExaHyPE’s default build environment uses GNU Make.

Further, ExaHyPE has the following optional dependencies:

• ExaHyPE user code can also be written in Fortran. In this
case, a Fortran compiler is needed.

• To exploit multi- or manycore computers, Intel’s TBB 2017
is required. It is open source and works with GCC and Intel
compilers.

• To run ExaHyPE on a distributed memory cluster, MPI is
needed. ExaHyPE uses only very basic MPI routines (use
e.g. MPI 1.3).

• To use ExaHyPE’s optimised compute kernels, Intel’s
libxsmm1 and Python’s module Jinja22 are required. A
local installation script is made available.

Appendix B. Obtaining ExaHyPE

ExaHyPE is free software is hosted at www.exahype.eu. There
a two different options to obtain ExaHyPE, the first is to download
a complete snapshot of ExaHyPE, in this case a snapshot of
Peano is included. The second option is to clone the repository,
in this case Peano has to be added manually. The repository
is available at https://gitlab.lrz.de/exahype/ExaHyPE-Engine. The
ExaHyPE guidebook contains documentation, detailed rationale
and links to further resources and is available at http://www.
peano-framework.org/exahype/guidebook.pdf.
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