300 research outputs found

    A simple inert model solves the little hierarchy problem and provides a dark matter candidate

    Full text link
    We discuss a minimal extension to the standard model in which two singlet scalar states that only interacts with the Higgs boson is added. Their masses and interaction strengths are fixed by the two requirements of canceling the one-loop quadratic corrections to the Higgs boson mass and providing a viable dark matter candidate. Direct detection of the lightest of these new states in nuclear scattering experiments is possible with a cross section within reach of future experiments.Comment: Finite corrections included. Model modified. Conclusion unchange

    Bounds on Dirac Neutrino Masses from Nucleosynthesis

    Full text link
    We derive new bounds on the Dirac mass of the tau and muonic neutrinos. By solving the kinetic equation for the rate of energy deposition due to helicity flipping processes and imposing the constraint that the number of effective species contributing to the energy density at the time of nucleosynthesis be Δkν< 0.3\Delta k_\nu<~0.3, we find the bounds mνμ< 150m_{\nu_\mu} < ~150 KeV and mντ< 190m_{\nu_\tau} < ~190 KeV for TQCD=200T_{\rm QCD}= 200 MeV. The constraint Δkν <0.1 \Delta k_\nu~<0.1~ leads to the much stronger bound mν<10m_\nu <10 KeV for both species of neutrinos.Comment: 10 pages, UM-TH-94-21, UMN-TH-1303-94, FERMILAB-Pub-94/199-

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range 1.73η1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 AA\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.

    Cosmic Microwave Background constraint on residual annihilations of relic particles

    Get PDF
    Energy injected into the Cosmic Microwave Background at redshifts z<10^6 will distort its spectrum permanently. In this paper we discuss the distortion caused by annihilations of relic particles. We use the observational bounds on deviations from a Planck spectrum to constrain a combination of annihilation cross section, mass, and abundance. For particles with (s-wave) annihilation cross section, =\sigma_0, the bound is f[(\sigma_0/6e-27cm^3/s)(\Omega_{X\bar{X}}h^2)^2]/(m_X/MeV)<0.2, where m_X is the particle mass, \Omega_{X\bar{X}} is the fraction of the critical density the particle and its antiparticle contribute if they survive to the present time, h=H_0/(100km/s/Mpc), H_0 is the Hubble constant, and f is the fraction of the annihilation energy that interacts electromagnetically. We also compute the less stringent limits for p-wave annihilation. We update other bounds on residual annihilations and compare them to our CMB bound.Comment: submitted to Phys. Rev.

    Lepton Flavor Violating Process in Bi-maximal texture of Neutrino Mixings

    Get PDF
    We investigate the lepton flavor violation in the framework of the MSSM with right-handed neutrinos taking the large mixing angle MSW solution in the quasi-degenerate and the inverse-hierarchical neutrino masses. We predict the branching ratio of μe+γ\mu \to e+\gamma and τμ+γ\tau \to \mu+\gamma processes assuming the degenerate right-handed Majorana neutrino masses. We find that the branching ratio in the quasi-degenerate neutrino mass spectrum is 100 times smaller than the ones in the inverse-hierarchical and the hierarchical neutrino spectra. We emphasize that the magnitude of Ue3U_{e3} is one of important ingredients to predict BR(μe+γ\mu \to e +\gamma ). The effect of the deviation from the complete-degenerate right-handed Majorana neutrino masses are also estimated. Furtheremore, we examine the S_{3\sL}\times S_{3\sR} model, which gives the quasi-degenerate neutrino masses, and the Shafi-Tavartkiladze model, which gives the inverse-hierarchical neutrino masses. Both predicted branching ratios of μe+γ\mu\to e+\gamma are smaller than the experimantal bound.Comment: Latex file, 38 pages, 10 figures, revised versio

    Partial Wave Analysis of the Reaction p(3.5GeV)+ppK+Λp(3.5 GeV)+p \to pK^+\Lambda to Search for the "ppKppK^-" Bound State

    Get PDF
    Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV)+ppK+Λp(3.5GeV)+p\to pK^{+}\Lambda. This reaction might contain information about the kaonic cluster "ppKppK^-" via its decay into pΛp\Lambda. Due to interference effects in our coherent description of the data, a hypothetical KNN\overline{K}NN (or, specifically "ppKppK^-") cluster signal must not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectra like pΛp\Lambda. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN\overline{K}NN cluster. At a confidence level of CLs_{s}=95\% such a cluster can not contribute more than 2-12\% to the total cross section with a pK+ΛpK^{+}\Lambda final state, which translates into a production cross-section between 0.7 μb\mu b and 4.2 μb\mu b, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.Comment: 7 Pages, 5 Figure

    Production of Sigma{\pm}pi?pK+ in p+p reactions at 3.5 GeV beam energy

    Full text link
    We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.Comment: 15 pages, 5 figure

    Microwave assisted synthesis of novel bis-flavone dimers as new anticancer agents

    Get PDF
    In this study we describe a microwave based click chemistry method used to prepare a family of novel bis-flavone dimers. The substituted 7-hydroxy and 4’-hydroxy flavonoids were linked through a triazole ring. The compounds were easily synthesized and purified in high yields. The bis-flavonoids were tested on different cell lines including HCT116, HepG2, MCF7 and MOLT-4. Several analogues showed to have anticancer activity with IC50 values in the range of 20-60 µM. Flavonoids are known for their anticancer properties and this method provides the basis for new medicinal structures

    Origin of the low-mass electron pair excess in light nucleus-nucleus collisions

    Get PDF
    We report measurements of electron pair production in elementary p+p and d+p reactions at 1.25 GeV/u with the HADES spectrometer. For the first time, the electron pairs were reconstructed for n+p reactions by detecting the proton spectator from the deuteron breakup. We find that the yield of electron pairs with invariant mass Me+e- > 0.15 GeV/c2 is about an order of magnitude larger in n+p reactions as compared to p+p. A comparison to model calculations demonstrates that the production mechanism is not sufficiently described yet. The electron pair spectra measured in C+C reactions are compatible with a superposition of elementary n+p and p+p collisions, leaving little room for additional electron pair sources in such light collision systems.Comment: 11 pages, 2 figures, \usepackage{epsfig

    Particle density fluctuations

    Full text link
    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
    corecore