4,174 research outputs found
Possible correlation between work-hardening and fatigue-failure
Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test
U-Pn geochronology of deformed metagranites in central Sutherland, Scotland: evidence for widespread late Silurian metamorphism and ductile deformation of the Moine Supergroup during the Caledonian orogeny
Within the Caledonides of central Sutherland, Scotland, the Neoproterozoic metasedimentary rocks of the Moine Supergroup record NW-directed D2 ductile thrusting and nappe assembly, accompanied by widespread tight-to-isoclinal folding and amphibolite-facies metamorphism. A series of metagranite sheets which were emplaced and penetratively deformed during D2 have been dated using SHRIMP UâPb geochronology. Zircon ages of 424 8 Ma (Vagastie Bridge granite), 420 6 Ma (Klibreck granite) and 429 11 Ma (Strathnaver granite) are interpreted to date emplacement, and hence regional D2 deformation, during
mid- to late Silurian time. Titanite ages of 413 3 Ma (Vagastie Bridge granite) and 416 3 Ma (Klibreck granite) are thought to date post-metamorphic cooling through a blocking temperature of c. 550â 500 8C. A mid- to late Silurian age for D2 deformation supports published models that have viewed the internal ductile thrusts of this part of the orogen as part of the same kinematically linked system of forelandpropagating thrusts as the marginal Moine Thrust Zone. The new data contrast with previous interpretations that have viewed the dominant structures and metamorphic assemblages within the Moine Supergroup as having formed during the early to mid-Ordovician Grampian arcâcontinent orogeny. The mid-to late Silurian D2 nappe stacking event in Sutherland is probably a result of the collision of Baltica with the Scottish segment of Laurentia
Use of electronic medical records and biomarkers to manage risk and resource efficiencies
Peer reviewedPublisher PD
Constitutive behavior of as-cast A356
The constitutive behavior of aluminum alloy A356 in the as-cast condition has
been characterized using compression tests performed over a wide range of
deformation temperatures (30-500{\deg}C) and strain rates (\approx0.1-10 /s).
This work is intended to support the development of process models for a wide
range of conditions including those relevant to casting, forging and machining.
The flow stress behavior as a function of temperature and strain rate has been
fit to a modified Johnson-Cook and extended Ludwik-Hollomon expression. The
data has also been assessed with both the strain-independent Kocks-Mecking and
Zener-Hollomon frameworks. The predicted plastic flow stress for each
expression are compared. The results indicate that the extended Ludwik-Hollomon
is best suited to describe small strain conditions (stage III hardening), while
the Kocks-Mecking is best employed for large strain (stage IV). At elevated
temperatures, it was found that the Zener-Hollomon model provides the best
prediction of flow stress.Comment: 34 pages, 12 figure
Single cell mechanics: stress stiffening and kinematic hardening
Cell mechanical properties are fundamental to the organism but remain poorly
understood. We report a comprehensive phenomenological framework for the
nonlinear rheology of single fibroblast cells: a superposition of elastic
stiffening and viscoplastic kinematic hardening. Our results show, that in
spite of cell complexity its mechanical properties can be cast into simple,
well-defined rules, which provide mechanical cell strength and robustness via
control of crosslink slippage.Comment: 4 pages, 6 figure
Parallelized Hybrid Monte Carlo Simulation of Stress-Induced Texture Evolution
A parallelized hybrid Monte Carlo (HMC) methodology is devised to quantify
the microstructural evolution of polycrystalline material under elastic
loading. The approach combines a time explicit material point method (MPM) for
the mechanical stresses with a calibrated Monte Carlo (cMC) model for grain
boundary kinetics. The computed elastic stress generates an additional driving
force for grain boundary migration. The paradigm is developed, tested, and
subsequently used to quantify the effect of elastic stress on the evolution of
texture in nickel polycrystals. As expected, elastic loading favors grains
which appear softer with respect to the loading direction. The rate of texture
evolution is also quantified, and an internal variable rate equation is
constructed which predicts the time evolution of the distribution of
orientations.Comment: 20 pages, 8 figure
Symmetry-Breaking Motility
Locomotion of bacteria by actin polymerization, and in vitro motion of
spherical beads coated with a protein catalyzing polymerization, are examples
of active motility. Starting from a simple model of forces locally normal to
the surface of a bead, we construct a phenomenological equation for its motion.
The singularities at a continuous transition between moving and stationary
beads are shown to be related to the symmetries of its shape. Universal
features of the phase behavior are calculated analytically and confirmed by
simulations. Fluctuations in velocity are shown to be generically
non-Maxwellian and correlated to the shape of the bead.Comment: 4 pages, 2 figures, REVTeX; formatting of references correcte
Finite Sized Atomistic Simulations of Screw Dislocations
The interaction of screw dislocations with an applied stress is studied using
atomistic simulations in conjunction with a continuum treatment of the role
played by the far field boundary condition. A finite cell of atoms is used to
consider the response of dislocations to an applied stress and this introduces
an additional force on the dislocation due to the presence of the boundary.
Continuum mechanics is used to calculate the boundary force which is
subsequently accounted for in the equilibrium condition for the dislocation.
Using this formulation, the lattice resistance curve and the associated Peierls
stress are calculated for screw dislocations in several close packed metals. As
a concrete example of the boundary force method, we compute the bow out of a
pinned screw dislocation; the line-tension of the dislocation is calculated
from the results of the atomistic simulations using a variational principle
that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure
- …
