The interaction of screw dislocations with an applied stress is studied using
atomistic simulations in conjunction with a continuum treatment of the role
played by the far field boundary condition. A finite cell of atoms is used to
consider the response of dislocations to an applied stress and this introduces
an additional force on the dislocation due to the presence of the boundary.
Continuum mechanics is used to calculate the boundary force which is
subsequently accounted for in the equilibrium condition for the dislocation.
Using this formulation, the lattice resistance curve and the associated Peierls
stress are calculated for screw dislocations in several close packed metals. As
a concrete example of the boundary force method, we compute the bow out of a
pinned screw dislocation; the line-tension of the dislocation is calculated
from the results of the atomistic simulations using a variational principle
that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure