Abstract

A parallelized hybrid Monte Carlo (HMC) methodology is devised to quantify the microstructural evolution of polycrystalline material under elastic loading. The approach combines a time explicit material point method (MPM) for the mechanical stresses with a calibrated Monte Carlo (cMC) model for grain boundary kinetics. The computed elastic stress generates an additional driving force for grain boundary migration. The paradigm is developed, tested, and subsequently used to quantify the effect of elastic stress on the evolution of texture in nickel polycrystals. As expected, elastic loading favors grains which appear softer with respect to the loading direction. The rate of texture evolution is also quantified, and an internal variable rate equation is constructed which predicts the time evolution of the distribution of orientations.Comment: 20 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019