A parallelized hybrid Monte Carlo (HMC) methodology is devised to quantify
the microstructural evolution of polycrystalline material under elastic
loading. The approach combines a time explicit material point method (MPM) for
the mechanical stresses with a calibrated Monte Carlo (cMC) model for grain
boundary kinetics. The computed elastic stress generates an additional driving
force for grain boundary migration. The paradigm is developed, tested, and
subsequently used to quantify the effect of elastic stress on the evolution of
texture in nickel polycrystals. As expected, elastic loading favors grains
which appear softer with respect to the loading direction. The rate of texture
evolution is also quantified, and an internal variable rate equation is
constructed which predicts the time evolution of the distribution of
orientations.Comment: 20 pages, 8 figure