3,096 research outputs found

    Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate

    Get PDF
    Six males clad only in shorts were exposed to high levels of airborne di(n-butyl) phthalate (DnBP) and diethyl phthalate (DEP) in chamber experiments conducted in 2014. In two 6 h sessions, the subjects were exposed only dermally while breathing clean air from a hood, and both dermally and via inhalation when exposed without a hood. Full urine samples were taken before, during, and for 48 h after leaving the chamber and measured for key DnBP and DEP metabolites. The data clearly demonstrated high levels of DnBP and DEP metabolite excretions while in the chamber and during the first 24 h once leaving the chamber under both conditions. The data for DnBP were used in a modeling exercise linking dose models for inhalation and transdermal permeation with a simple pharmacokinetic model that predicted timing and mass of metabolite excretions. These models were developed and calibrated independent of these experiments. Tests included modeling of the “hood-on” (transdermal penetration only), “hood-off” (both inhalation and transdermal) scenarios, and a derived “inhalation-only” scenario. Results showed that the linked model tended to duplicate the pattern of excretion with regard to timing of peaks, decline of concentrations over time, and the ratio of DnBP metabolites. However, the transdermal model tended to overpredict penetration of DnBP such that predictions of metabolite excretions were between 1.1 and 4.5 times higher than the cumulative excretion of DnBP metabolites over the 54 h of the simulation. A similar overprediction was not seen for the “inhalation-only” simulations. Possible explanations and model refinements for these overpredictions are discussed. In a demonstration of the linked model designed to characterize general population exposures to typical airborne indoor concentrations of DnBP in the United States, it was estimated that up to one-quarter of total exposures could be due to inhalation and dermal uptake

    Reducing vortex density in superconductors using the ratchet effect

    Full text link
    A serious obstacle that impedes the application of low and high temperature superconductor (SC) devices is the presence of trapped flux. Flux lines or vortices are induced by fields as small as the Earth's magnetic field. Once present, vortices dissipate energy and generate internal noise, limiting the operation of numerous superconducting devices. Methods used to overcome this difficulty include the pinning of vortices by the incorporation of impurities and defects, the construction of flux dams, slots and holes and magnetic shields which block the penetration of new flux lines in the bulk of the SC or reduce the magnetic field in the immediate vicinity of the superconducting device. Naturally, the most desirable would be to remove the vortices from the bulk of the SC. There is no known phenomenon, however, that could form the basis for such a process. Here we show that the application of an ac current to a SC that is patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern. The mechanism responsible for this phenomenon is the so called ratchet effect, and its working principle applies to both low and high temperature SCs. As a first step here we demonstrate that with an appropriate choice of the pinning potential the ratchet effect can be used to remove vortices from low temperature SCs in the parameter range required for various applications.Comment: 7 pages, 4 figures, Nature (in press

    An optimized TOPS+ comparison method for enhanced TOPS models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+. Results We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method. Conclusions Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90 percent accuracy for SCOP alpha+beta; a 6 percent increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98 percent accuracy. Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.This article is available through the Brunel Open Access Publishing Fun

    Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories

    Full text link
    We carry out a gauge invariant analysis of certain perturbations of D−2D-2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in DD dimensions, a generalization of that recently found in arXiv:0709.0471[hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.Comment: A new reference added

    Is thirty-seven years sufficient for full return of the ant biota following restoration?

    Get PDF
    Introduction: An assessment of whether rehabilitated mine sites have resulted in natural or novel ecosystems requires monitoring over considerable periods of time or the use of space-for-time substitution (chronosequence) approaches. Methods: To provide an assessment of ecosystem recovery in areas mined for bauxite in 1975, the ant fauna of one area planted with Eucalyptus resinifera, one seeded with mixed native species, one topsoiled but unrestored, and a forest reference was subjected to a ‘long-term’ study by sampling monthly and latterly annually between 1976 and 1989 using pitfall traps. These plots were resampled in 2012. A companion ‘short-term’ chronosequence study was performed in 1979 in 28 bauxite mines of various ages and restored by a range of different methods, plus three forest references. In order to examine the assertion that the observed differences between restored areas and forest references will lessen with time, sampling using comparable methods was repeated in 2012 in seven of the original plots, representing progressive advances in rehabilitation technology: planted pines; planted eastern states eucalypts; planted native eucalypts; planted eucalypts over seeded understorey; and planted eucalypts on fresh, double-stripped topsoil, plus two forest reference sites. Results: Ant and other invertebrate richness in the long-term study was initially superior in the seeded plot, with little difference between the planted and unplanted plots. It was concluded that although composition of the ant fauna had converged on that of the forest over the 14-year period, differences still persisted.The 2012 resampling revealed that ant species richness and composition had deteriorated in the seeded plot, while values in the unplanted plot, which now supported naturally colonised trees and an understorey, had increased. Differences between all rehabilitated plots and forest still persisted. As with the long-term study, the rate of fauna return and the type of ants present in the short-term study plots differed with the method of rehabilitation used, and, in 1979, no plots had converged on the forest in terms of the ant assemblage. By 2012 ant richness increased, and more so with each advance in rehabilitation technology, except for seeding, in which the understorey had collapsed. Double-stripping of topsoil resulted in the greatest improvements in ant species richness, although none of the areas had converged on the forest reference areas in terms of assemblage composition or ant functional group profiles. Furthermore, assemblage composition in the forest had changed over time, possibly due to reductions in rainfall, which further complicates rehabilitation objectives. Conclusions: It is concluded that although rehabilitation can achieve its objective of restoring diversity, the original assemblage has still not been achieved after 37 years, suggesting that a degree of novelty has been introduced into these older-style rehabilitated areas. The company’s current rehabilitation practices reflect multiple advances in their approach, lending optimism that current restoration may achieve something close to the original ecosystem, an outcome that can only be verified by extended studies like the one described here

    Identification of strontium in the merger of two neutron stars.

    Get PDF
    Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13

    Differential Consumption of Four Aphid Species by Four Lady Beetle Species

    Get PDF
    The acceptability of four different aphid species Macrosiphum albifrons (Essig), Macrosiphum euphorbiae (Thomas), Macrosiphum pseudorosae Patch, and Myzus persicae (Sulzer) (Hemiptera: Aphididae), as prey for four lady beetle species, one native species Coccinella trifasciata L, and three non-native Coccinella septempunctata L, Harmonia axyridis Pallas, Propylea quatuordecimpunctata L (Coleoptera: Coccinellidae) were tested in the laboratory. The relative field abundance of adults of the same lady beetle species on host vegetation, Lupinus polyphyllus Lindley (Fabales: Fabaceae), Solanum tuberosum L (Solanales: Solanaceae), and Rosa multiflora Thunberg (Rosales: Rosaceae), both with and without aphids present was also observed. In the laboratory, H. axyridis generally consumed the most aphids, while P. quatuordecimpunctata consumed the fewest. The exception was P. quatuordecimpunctata, which consumed a greater number of M. albifrons nymphs, and C. trifasciata, which consumed a greater number of M. albifrons nymphs and adults, compared with the other two beetle species. Lady beetles consumed fewer M. albifrons compared with the other three aphid species, likely because of deterrent compounds sequestered by this species from its host plant. In the field, P. quatuordecimpunctata was the most abundant species found on L. polyphyllus and S. tuberosum

    The Effects of Previous Misestimation of Task Duration on Estimating Future Task Duration

    Get PDF
    It is a common time management problem that people underestimate the duration of tasks, which has been termed the "planning fallacy." To overcome this, it has been suggested that people should be informed about how long they previously worked on the same task. This study, however, tests whether previous misestimation also affects the duration estimation of a novel task, even if the feedback is only self-generated. To test this, two groups of participants performed two unrelated, laboratory-based tasks in succession. Learning was manipulated by permitting only the experimental group to retrospectively estimate the duration of the first task before predicting the duration of the second task. Results showed that the experimental group underestimated the duration of the second task less than the control group, which indicates a general kind of learning from previous misestimation. The findings imply that people could be trained to carefully observe how much they misestimate task duration in order to stimulate learning. The findings are discussed in relation to the anchoring account of task duration misestimation and the memory-bias account of the planning fallacy. © 2014 Springer Science+Business Media New York

    Seagrass Canopy Photosynthetic Response Is a Function of Canopy Density and Light Environment: A Model for Amphibolis griffithii

    Get PDF
    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments

    Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis

    Get PDF
    Mating behaviour is a fundamental aspect of the evolutionary ecology of sexually reproducing species, but one that has been under-researched in parasitic nematodes. We analysed mating behaviour in the parasitic nematode Trichostrongylus tenuis by performing a paternity analysis in a population from a single red grouse host. Paternity of the 150 larval offspring of 25 mothers (sampled from one of the two host caeca) was assigned among 294 candidate fathers (sampled from both caeca). Each candidate father's probability of paternity of each offspring was estimated from 10-locus microsatellite genotypes. Seventy-six (51%) offspring were assigned a father with a probability of >0.8, and the estimated number of unsampled males was 136 (95% credible interval (CI) 77-219). The probability of a male from one caecum fathering an offspring in the other caecum was estimated as 0.024 (95% CI 0.003-0.077), indicating that the junction of the caeca is a strong barrier to dispersal. Levels of promiscuity (defined as the probability of two of an adult's offspring sharing only one parent) were high for both sexes. Variance in male reproductive success was moderately high, possibly because of a combination of random mating and high variance in post-copulatory reproductive success. These results provide the first data on individual mating behaviour among parasitic nematodes
    • 

    corecore