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Abstract

Background: Although methods based on highly abstract descriptions of protein structures, such as VAST and
TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological
significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison
based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In
this paper we show how these results can be significantly improved using parameter optimization, and we call the
resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+.

Results: We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by
considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as
first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs,
annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise
comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the
biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method.

Conclusions: Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to
our basic TOPS+ method, giving 90% accuracy for SCOP alpha+beta; a 6% increase in accuracy compared to the
TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the
Chew-Kedem dataset [5], achieving 98% accuracy.

Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.

Background
The structural genomics consortium [6] aims to popu-
late protein fold space using high-throughput experi-
mental technologies. As a result the number of known
structures in the Protein Data Bank (PDB) [7] is increas-
ing rapidly every year and currently holds 59,790 struc-
tures (August 25, 2009). This highlights the importance
of the need for fast and reliable protein structure com-
parison methods. There are various methods which use
detailed 3D structures for comparison; SSAP [8,9] uses a
double dynamic programming method that takes into
account several different features of protein structure
including phi/psi angles, accessibility and inter-residue
vectors to align two protein structures. Other
approaches include STAMP [10], DALI [11] and the
Combinatorial Extension method [12]. On the other

hand abstract level structural comparison methods are
based on topological/vector models of secondary struc-
ture elements (SSEs) and their relationships. VAST is a
vector based protein structure comparison method
[13,14]. GRATH [15] is a graph-based algorithm that
compares the axial vectors of alpha helices and beta
strands of two proteins, together with the distances,
angles and chirality between these vectors. It is based on
a method by Grindley et al. [16]. Earlier work by Koch
et al. [17] uses a graph method to find maximal com-
mon SSEs in a pair of proteins. TOPS is a graph-based
method applied to the topological representation of the
protein structures [3]. Although these methods perform
very fast protein structure comparison in most cases the
results have significantly less biological interpretation
due to the abstract nature of the protein model. More-
over, the functional annotation problem is made much
more complex by the fact that the number of protein
folds is limited while their range of functions is very
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diverse. For example, the current version of the SCOP
database classified the (single) TIM barrels protein fold
into 33 distinct functional superfamilies.
This motivated our research to develop a novel topolo-

gical model for protein structures, enhanced with struc-
tural and biochemical features, such as ligand interaction
information and amino acid sequence length of the sec-
ondary structures, in order to permit better, more biolo-
gically significant comparison methods. Previously, we
have discussed the basic mechanisms of our novel TOPS+
comparison method for novel topological models. We
compute the edit distance between two proteins based on
TOPS+ strings elements using a dynamic programming
approach. We have benchmarked our method with an all-
against-all pairwise comparison using a large dataset of
2,620 non-redundant structures from the PDB40 and the
results were validated using the standard SCOP superfam-
ily classification numbers. We have also compared our
method against other methods and showed that it is faster
than SSAP, FATCAT, DALI and TOPS and that it has a
comparable performance against TOPS [18]. Recently we
developed the TOPS++FATCAT system that exploits the
TOPS+ strings comparison method to speedup the FAT-
CAT protein structural alignment program for fast flexible
structural alignment, while preserving the accuracy of the
original FATCAT method [19]. These promising results
have facilitated the introduction of further constraints on
ligand-arc matching.
In this paper, we show how the above results can be sig-

nificantly improved using parameter optimization at two
stages of the TOPS+ method: (i) in the generation of the
dynamic programming table and (ii) in the computation of
the comparison score using a compression measure. The
dynamic programming algorithm includes weight tables
for matching TOPS+ strings elements, the match scores
take into account not only the SSEType, orientation but in
addition they include scores for total in/out/ligand arcs
together with their arc types such as right and left chiral-
ities, and parallel and anti-parallel hydrogen-bonds. This
research work involved (a) generating the TOPS descrip-
tions enhanced with in/out/ligand arc information for a
large set of proteins; (b) designing the weight tables; (c)
optimization of weights in the table; (d) designing a pair-
wise comparison metric based on a compression measure
and optimizing different parameters to take into account
the variability on both components of the topological and
ligand interaction features. The optimization of our
advanced TOPS+ comparison method was carried out on
the PDB40 representative dataset. Furthermore, we assess
the biological significance of our method against existing
protein structure comparison methods based on cluster
analysis and validation using an F-measure calculation
[20,21] on the Chew-Kedem dataset [4,5].

Results and Discussion
Analysis of results for the PDB40 dataset
Figure 1 shows the ROC curves and Table 1 gives AUC
values for SCOP classes all-alpha, all-beta, alpha/beta
and alpha+beta on the PDB40 subset dataset obtained
from the TOPS, TOPS+ and advanced TOPS+ (adv-
TOPS+) methods. The results show that the advTOPS+
method is superior to TOPS+ on classes all-beta, alpha/
beta and alpha+beta with 82%, 77% and 90% accuracy
(see Table 1); while it gives similar results on the all-
alpha class with an accuracy of 82%. When we com-
pared our advTOPS+ method with TOPS we have better
performance on alpha+beta and all-alpha classes with
accuracy level increased by 6%; the result is comparable
in the case of classes all-beta and alpha/beta protein
domains. The TOPS method relies on arc information
and in alpha rich proteins there are no hydrogen-bond
arcs and few chirality arcs, hence it performs poorly on
the all-alpha class. Our TOPS+ methods has a better
performance compared to TOPS in all-alpha class of
proteins, because in our TOPS+ model we have
included additional biochemical features such as loops,
SSE-ligand interactions, and SSE segment length. More-
over in the all-alpha class, most of the proteins have
structure-dependent ligand interactions such as DNA-
binding proteins with (Helix-Loop-Helix = HLH, Helix-
Turn-Helix = HTH) and metal-binding proteins (like
HEM–binding proteins, etc.). Thus our method can
recognize those proteins more efficiently compared to
TOPS.
In alpha+beta class our advTOPS+ method has a 90%

accuracy, which is superior when compared with both
TOPS and our basic TOPS+ method, which have only
84% accuracy (see Table 1). Because these proteins are
composed of segregated alpha and beta regions the
structure-dependent ligand interactions and additional
chiral, hydrogen bonds are also present. Thus our para-
meter optimization can handle all arcs more efficiently.
On the other hand, the alpha/beta class of proteins

contains mixed alpha and beta secondary structures;
more importantly although the protein domains from
these classes have ligand interactions, they may not be
structure-dependent ligand interactions. In these classes
for most of the protein superfamilies the ligands have a
tendency to bind the clefts or binding pocket which
have appropriate physiochemical properties and the cor-
rect conformational geometry of the amino acids.
Furthermore it is important to note that in our TOPS+
and advTOPS+ comparison methods we have consid-
ered only the total number of ligand-arcs rather than
the actual ligand property match, thus we have false
positives in some SCOP classes. In the case of all-beta
class proteins our advTOPS+ method has comparable
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performance against TOPS with 87% accuracy (see
Table 1); in this class proteins contain a significant
number of hydrogen bond and chiral arcs, and thus
parameter optimization is performed more efficiently.
From the F-measure statistical evaluation analysis (we
used the same cutoff value of 0.35 for all three methods)
we found that the advTOPS+ method appears to always
do better than TOPS and TOPS+ except for the alpha/
beta class of proteins (see Table 1).
The overall results show that our advTOPS+ method

exhibits substantial improvement compared to basic
TOPS+. It has better performance for all-alpha and
alpha+beta proteins compared to TOPS. On the other
SCOP classes the performance is comparable with
TOPS. Since our method considers only the total

number of ligand arcs rather than the actual ligand
property this leads to false positives to some extent. Our
advTOPS+ method can efficiently recognize structure-
dependent ligand interactions appropriately in the case
of DNA-binding proteins and metal binding proteins.

Analysis of results for the Chew-Kedem dataset
Our advanced TOPS+ comparison method outperforms
all the other methods (TOPS, basic TOPS+ and SSAP)
and groups 36 representative proteins from five fold
families into biologically significant clusters (see Figure
2). In Figure 2 each protein domain is represented in
the following format “domainName_foldFamilies”. The
tags of the “foldFamilies” represents protein structures
from five different protein folds; where tb = TIM barrel,
g = Globins, ab = alpha beta, b = all beta, and a = all
alpha protein families. The clusters obtained from our
advanced TOPS+ method show that all of the protein
domains are grouped according to their structural fold
and biological significance except d1ct9a1 (see explana-
tions below). The basic TOPS+ method also groups
most of the protein domains into correct fold families
except for an all beta protein d1cdb__ and two protein
domains d2hbg__, d1hlm__ from globins which are
grouped together with all alpha proteins (see the

Table 1 ROC curve and F-measure analysis of structural
homology for the PDB40 dataset.

SCOP Class TOPS TOPS+ advTOPS+

1 All alpha 0.76/0.79 0.83/0.85 0.82/0.88

2 All beta 0.89/0.85 0.85/0.83 0.87/0.86

3 Alpha/beta 0.82/0.75 0.75/0.70 0.77/0.70

4 Alpha+beta 0.84/0.75 0.84/0.74 0.90/0.81

AUC/F-measure values for all the comparison methods for the PDB40 dataset.

Figure 1 ROC curves for the PDB40 dataset. ROC curves for SCOP classes all-alpha, all-beta, alpha/beta and alpha+beta from TOPS, TOPS+
and advanced TOPS+ methods on the PDB40 dataset.
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Figure 2 Clusters for the Chew-Kedem dataset. Chew-Kedem dataset clusters obtained from the advanced TOPS+ comparison method (for
more information see the supplementary material page at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/optTOPSplus-results.html).
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supplementary material page for clusters from other
methods and additional information at http://balabio.
dcs.gla.ac.uk/mallika/WebTOPS/optTOPSplus-results.
html). In comparison both the TOPS and SSAP meth-
ods produce clusters in which there are many wrongly
grouped domains (see supplementary material page for
clusters from other methods and additional information
at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/opt-
TOPSplus-results.html). The quantitative analysis using
the F-measure calculation results in more than 98%
accuracy for our advTOPS+ method, which is higher
than SSAP (96%), TOPS (95%) and basic TOPS+ (93%)
(see Table 2). When we compare our advTOPS+ with
our basic TOPS+ method we have achieved a 5%
improvement based on parameter optimization.
One interesting example from our cluster analysis (see

Figure 2) is that of the Asparagine synthetase B, C-term-
inal domain d1ct9a1 (alpha-beta fold) which is grouped
by the advanced TOPS+ method with the TIM barrel
domains (see Figure 3). Table 3 provides advanced TOPS+
comparison scores for d1ct9a1 (SSE_Ln = 53) against
those protein domains belonging to alpha-beta and TIM-
barrel fold families, together with their SSEs length
(SSE_Ln) and LCS pattern length (LCS PAT_Ln). Interest-
ingly, d1ct9a1 has a smaller distance score against all of
the TIM-barrel proteins compared to alpha-beta protein
domains; specifically, for the xylose isomerase protein
d6xia__. When we closely checked the 3D structure of
d1ct9a1, we found that it has alpha helices in its N-term-
inal domain and it contains half TIM-barrel like structures
in its C-terminal domain (see Figure 3). This suggests that
a sub-domain of the d1ct9a1 exhibits a structural drift
between the alpha-beta fold and the TIM-barrel fold. The
structural drift [22] is a special case of gregariousness as
described by [23]. Since our TOPS+ method is based on
an abstraction of protein structure in the form of SSEs
and topological features without any geometrical proper-
ties it is able to perform matching at the fold level and to
include most of the SSEs which are common to two pro-
tein structures.

Conclusions
In this paper we have reported the generation of TOPS+
and TOPS+ strings models for large datasets and have

presented an improved TOPS+ comparison method
using parameter optimization both for the computation
of the dynamic programming table and the computation
of the comparison score using a compression metric.
Through our evaluation analysis we have showed that
our advanced TOPS+ comparison method has a sub-
stantial improvement on all the SCOP classes compared
to our basic TOPS+ method. Our advanced TOPS+

Table 2 Biological significance of protein domain clusters
for the Chew-Kedem dataset.

Method F-measure

SSAP 0.966

TOPS 0.955

TOPS+ 0.931

advTOPS+ 0.985

F-measure of the clusters obtained from different protein structure
comparison methods.

Figure 3 Protein domain 3D cartoon diagrams. 3D cartoon
diagrams (top view) of the alpha-beta protein domains (a) d1aa9__,
(b) d1ct9a1, (c) TIM barrel protein domain d6xia__. Beta-strands,
alpha-helices and loops are colored with yellow, red and green,
respectively. Ligand molecules are indicated by spheres and dots
(metals).
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method has better performance compared to TOPS on
alpha+beta and all-alpha and is comparable on all-beta
and alpha/beta. On the Chew-Kedem dataset our
advanced TOPS+ comparison outperforms all the other
methods.
This demonstrates that our TOPS+ and TOPS+

strings models can find more biologically significant
results and has led to interesting new directions to
incorporate ligand-pattern discovery in TOPS+ compari-
son [24]. Our method is faster than TOPS and SSAP
because it has time complexity O(n2), where n repre-
sents the number of SSEs in the protein domains. This
research opens new doors to an exciting improvement
to our TOPS+ models and advanced TOPS+ compari-
son method by the addition of features such as
amino-acid sequences, biochemical properties of the
protein-ligand interaction at atomic level, and arc scores
(both topological level and ligand level) for each SSE.
Moreover we can improve the comparison process with
additional statistical scoring values for each TOPS+
strings element match both at the micro (atomic-details
of protein-ligand interaction information) and the
macro level (abstract level).
Furthermore our novel TOPS+ models, TOPS+ strings

and comparison approaches could be applicable to dif-
ferent problem areas such as RNA secondary structure
comparison and prediction. Most of the drug-discovery
process starts with in-silico chemical compound screen-
ing which is computationally expensive. Our TOPS+
comparison approach could be applied as an initial step
to prune the search space and filter the proteins into
same folds interacting with similar or different ligands
and different folds interacting with similar or different
ligands.

Methods
TOPS+ and TOPS+ Strings Models
The TOPS model [1,2,25,26] represented protein struc-
tures at the fold level by a graph where the nodes stand
for SSEs–(up or down) alpha-helices and beta-strands–

and (non-directed) edges represent right or left-handed
chirality and parallel or anti-parallel hydrogen-bond
relationships. In addition, there is a total ordering over
the nodes, corresponding to the backbone of the pro-
tein. Our TOPS+ model enhances the original TOPS
graph model with structural and biochemical features
such as ligand interaction information and amino acid
sequence length of the secondary structures. We have
added extra nodes for loops (represented as a first class
object–SSE) and ligands as well as maintaining the exist-
ing nodes for alpha-helices and beta-strands.
Further, we have designed a string model based on

our TOPS+ graph model where the long-range and
short-range interactions between the SSEs are converted
into incoming and outgoing arcs for each SSE, which
maintain the directions and arc type properties. All rele-
vant SSE nodes are enhanced with SSE-ligand interac-
tion information which includes loop-ligand interaction
information. We abstract away from the ligands them-
selves, to give a linear model called TOPS+ string which
preserves the essential biochemical information whilst
permitting more efficient and non-heuristic algorithms
for comparison.
In detail, each SSE node is enriched with SSEType,

SSE segment details are indicated by PS-SL where PS is
the PDB start number and SL is the SSE segment
length, total incoming arcs (InArc) and total outgoing
arcs (OutArc), total number of ArcTypes, and total
number of ligand arcs (LigArc). The SSEType is given
by {E, e, H, h, U, u} where, ‘E’ and ‘e’ represent the ‘up’
and ‘down’ oriented beta-strands; ‘H’ and ‘h’ indicate the
‘up’ and ‘down’ oriented alpha-helices; ‘U’ and ‘u’ repre-
sent ligand-bound and ligand-free loops. The InArcType
is represented as a {R, L, P, A}, where ‘R’ and ‘L’ repre-
sent right and left chiralities; ‘P’ and ‘A’ represent paral-
lel and anti-parallel hydrogen-bonds respectively. The
OutArcType is represented in a similar manner by {R’,
L’, P’, A’}. Ligand arcs are indicated by LT = AA where
LT is the ligand type and AA is the PDB number. For
example, Figure 4(a) and 4(b) shows the representation

Table 3 advTOPS+ comparison scores for the Chew-Kedem dataset.

Protein Fold Domain SSE Ln LCS PAT Ln Adv TOPS+ Score LCS SSE PATTERN

Alpha-beta d1aa9__ 23 20 0.49 uEUhuEuhuEuhuEUhuEhu

d1gnp__ 25 20 0.51 uEUhuEhuEuhuuEUhuEhu

d6q21a_ 21 16 0.59 uEUhuEuhuEUhuEhu

d1qraa_ 25 20 0.51 ueUHueHueuHuueUHueHu

d5p21__ 25 20 0.51 ueUHueHueuHuueUHueHu

TIM-barrel d6xia__ 60 40 0.30 uhuhuHuHueuHueuHuhuehhuHuHueuuuHuhuhuuhu

d2mnr_1 37 29 0.37 uuuuHueuHueuHueuHueuHuuhuuuhu

d1chra1 41 31 0.35 uuuHuHueuHueuHueuHuHueuHuhuuuhu

d4enl_1 55 35 0.37 uhuhuHuueuuuHuhueuHuHuuhuuHuuHuHuhu

advTOPS+ comparison scores for alpha-beta and TIM-barrel folds in the Chew-Kedem dataset.
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Figure 4 TOPS+ representation of a protein domain. TOPS+ diagram and string representation of the protein domain 1fnb01. (a) TOPS+
diagram. (b) TOPS+ string. (c) 3D cartoon.
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of the TOPS+ model and the abstract TOPS+ string
representation for the protein domain 1fnb01 respec-
tively. Here the triangles represent the beta strands; red
curves represent the alpha helix; circles indicate loop
regions and green arcs indicate hydrogen bonds between
two beta strands, called the anti-parallel beta sheet. In
the 3D cartoon of 1fnb01 shown in Figure 4(c), the
ligand molecules ‘FAD’ and ‘SO4’ are indicated by
spheres. We have computed the topological information
for a given PDB based on either SCOP or CATH
domain definitions by using the TOPS cartoon genera-
tion method [27]. The InterCal program (Wallace and
Michalopoulos, personal communication) provides the
protein-ligand interaction information. Thus, by com-
bining topological details and the protein-ligand interac-
tion information, we have constructed our TOPS+ and
TOPS+ strings models for a given protein domain; for
more details refer to Veeramalai and Gilbert [18]. We
have generated the TOPS+ model and the TOPS+
strings representation of 28 976 and 28 298 protein
domains including 16 163 and 14 887 ligand-bound pro-
tein domains corresponding to the CATH 2.4 and the
SCOP 1.61, respectively.

Advanced TOPS+ Comparison Method based on Dynamic
Programming Algorithm
Our TOPS+ comparison method computes a compari-
son score between two proteins based on edit distance
using a dynamic programming approach. The Levensh-
tein distance or edit distance [28,29] gives a measure
(the cost) of the minimum number of elementary edit
operations (insertions, deletions and substitutions of
characters) necessary to transform one sequence into
the other. In this research we have improved our exist-
ing method using parameter optimization in the
dynamic programming table computation and also in
the computation of the comparison score.
We have added some additional functions to the stan-

dard edit distance algorithm in order to compare the
TOPS+ strings models of the two protein structures.
Our optimized comparison method comprises five
major steps as follows, where steps (1) and (5) take
parameter tuning tables and penalty weights for arc
information (both topological arcs and ligand arcs) into
account:

1. Recursive definition of the optimal dissimilarity
score for match and mismatch between TOPS+
strings elements (this process is based on the advan-
ced_SSEArc+Match function, which incorporates the
parameter optimization process using parameter
tuning table).
2. Construction of the Edit Distance (ED) matrix
(dynamic programming table).

3. Trace-back on the ED matrix (dynamic program-
ming table).
4. Obtain the LCS (Longest Common Substring),
which is equivalent to the largest common structural
core.
5. Computation of the comparison score based on
the compression measure which is optimized with
penalty weights for arc information (at both topolo-
gical arcs and ligand arcs).

In our optimized TOPS+ comparison method, the
computation of the edit distance matrix M is an impor-
tant process, in which the advanced_SSEArc+Match
function plays a key role in assigning dissimilarity scores
for each TOPS+ strings element match or mismatch
between the target ti Î T and the source sj Î S. This
function handles the parameter optimization process
while computing the construction of the edit-distance
matrix using a dynamic programming approach. It takes
the basic parameter list Pb supplied together with the
input and constructs the parameter tuning table PT
with 12 weights (w1 to w12) and integrates these weights
with the absolute arc differences (D1 to D12) between
the TOPS+ strings elements ti Î T and sj Î S, comput-
ing the final normalized dissimilarity score for match or
mismatch between the ti Î T and sj Î S. In each step
the advanced_SSEArc+Match function performs the fol-
lowing processes in order to obtain the dissimilarity
scores between each pair of TOPS+ strings elements of
T and S and to construct the dynamic programming
table:

• Construct the parameter tuning table PT based on
the basic parameter list Pb and this process per-
formed once.
• Compute the absolute difference for the arc fea-
tures such in/out/ligand arc between ti and sj of T
and S respectively.
• Compute the optimized dissimilarity score for ti
and sj match using equations (1) and (2) below.
• Construct the dynamic programming table.

Algorithm 1 (Edit distance between TOPS+ strings)
A function call ComputeEditDistance(T, S) computes the
edit distance matrix M, the backtrace pointer matrix P,
the edit distance value ed, and the longest common sub-
sequence lcs of two TOPS+ strings T and S.

function ComputeEditDistance(T = t1, ..., tn, S =
s1, ..., sm)

M [0, 0] ¬ 0
for i ¬ 1, ..., n do
M [i, 0] ¬ i

for j ¬ 1, ..., m do
M [0, j] ¬ j
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for i ¬ 1, ... n do
for j ¬ 1, ..., m do
A ¬ SSEArc+Match(ti, sj)
M [i, j] ¬ min{M [i, j - 1] + 1, M [i, j - 1] +

1, M [i - 1, j - 1] + A}
if M [i, j] = M [i - 1, j - 1] + A then

P [i, j] ¬ ‘m’ ▷ match or mismatch of si
to tj

else if M [i, j] = M [i, j - 1] + 1 then
P [i, j] ¬ ‘i’ ▷ insertion of sj into t

else
P [i, j] ¬ ‘d’ ▷ deletion of ti from t

ed ¬ M [n, m]
lcs ¬ BuildLCS(M, P, T, S)
return 〈M, P, ed, lcs〉

function BuildLCS(M, P, T, S)
lcs ¬ ∅ ▷ empty sequence
k ¬ 0
i ¬ n ▷ length of T
j ¬ m ▷ length of S
while i > 0 or j > 0 do
if P [i, j] = ‘m’ then

lcs ¬ lcs ∪ tj-1 ▷ match or mismatch of si-1
to tj-1

k ¬ k + 1
i ¬ i - 1
j ¬ j - 1

else if P [i, j] = ‘d’ then
i ¬ i - 1 ▷ deletion of ti-1 from t

else
j ¬ j - 1 ▷ insertion of sj-1 into t

return lcs
function SSEArc+Match(ti, sj)
mS ¬ 0
Parse(ti, tsk, tI, tO, tL, tIR, tIL, tIP, tIA, tOR, tOL, tOP,

tOA)
Parse(sj, ssk, sI, sO, sL, sIR, sIL, sIP, sIA, sOR, sOL, sOP,

sOA)
if MatchSSEArc+features(ti, sj) then
mS ¬ mS + 1

return mS
procedure Parse(ti, tsk, tI, tO, tL, tIR, tIL, tIP, tIA, tOR,

tOL, tOP, tOA)
tsk ¬ secondary structure length of ti
tI, tO, tL ¬ total number of incoming, outgoing,

ligand arcs of ti
tIR, tIL, tIP, tIA ¬ total number of incoming arcs of

type R, L, P, A of ti
tOR, tOL, tOP, tOA ¬ total number of outgoing arcs

of type R, L, P, A of ti
The time complexity is O(n2) where n is the length of

the string of SSEs. The current version of our TOPS+
method performs global alignment [30]. However, local
alignment [31] can be applied to find the local structural

similarity or patterns such as similar SSE-ligand interac-
tions at local level across different folds.

Optimizing the Computation of the Dynamic
Programming Table
We performed parameter tuning/optimization in order
to obtain the optimal approximate match between two
protein structures. In general, at the superfamily level,
only core structures are conserved throughout evolution
across the members of protein families. Studies have
shown that the number of SSE insertions and deletions
is variable for different sequence families or organisms
[32]. This implies that variable numbers of ‘indels’ are
applicable to the ArcsTypes and SSETypes across pro-
tein families from various organisms within a superfam-
ily. Thus, it is important to develop a cost matrix with
an additional penalty scoring function for such an
approximate matching process. In the following sections
we discuss the development of the parameter tuning
table and the computation of the absolute difference
between ArcTypes types and SSETypes. Subsequently,
we explain the main parameter optimization process
involved in the computation of the dynamic program-
ming table, which exploits the computation of a normal-
ized dissimilarity score for TOPS+ strings element
match.
Development of Parameter Tuning Table
The parameter-tuning table PT contains a list of weights
for all the SSEArc+ features given by w1, ..., w12, where,
w1 is applied to SSEType; w2 to total incoming arcs; w3,
w4, w5 and w6 to total incoming arcs of type R, L, P and
A respectively; w7 to total outgoing arcs; w8, w9, w10 and
w11 to total outgoing arcs of type R, L, P and A respec-
tively; and w12 to total ligands arcs. Every element ‘y’ in
PT is in the range 1..9. The SSEType weight w1 is
obtained from the ISM or DSM scoring matrices (see
Table 4). All the other weights w2 to w12 are computed
using a basic parameter set Pb which is supplied
with the input. The basic parameter Pb consists of a
list of five positive integers in the range 1..9 given by

Table 4 Identity and dissimilarity scoring matrices for
TOPS+ diagrams.

ISM DSM

SSE E e H h U u E e H h U u

E 0 1 1 1 1 1 0 1 2 2 2 2

e 1 0 1 1 1 1 1 0 2 2 2 2

H 1 1 0 1 1 1 2 2 0 1 2 2

h 1 1 1 0 1 1 2 2 1 0 2 2

U 1 1 1 1 0 1 2 2 2 2 0 1

u 1 1 1 1 1 0 2 2 2 2 1 0

Identity Scoring Matrix (ISM) and Dissimilarity Scoring Matrix (DSM) of
secondary structure elements used for matching TOPS+ diagrams.
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Pb = (p, q, r, s, t). The parameter values p and q corre-
spond to the parallel and the anti-parallel hydrogen-
bond arcs respectively; r and s correspond to right-
handed and left-handed chiralities respectively; t is for
the ligand arcs. Based on these conditions, we have con-
structed a total of 1,134 unique lists of basic parameters
Pb used for tuning the parameter table PT with weights
as follows:

• w3 = w8 = r (for incoming and outgoing arc
type_R)
• w4 = w9 = s (for incoming and outgoing arc
type_L)
• w5 = w10 = p (for incoming and outgoing arc
type_P)
• w6 = w11 = q (for incoming and outgoing arc
type_A)
• w2 = w7 = r + s + p + q (for total incoming and
outgoing arcs)
• w12 = t (for total ligand arcs)

Computation of Absolute Differences
The normalized dissimilarity score for SSE is obtained
from the absolute difference of the SSE length (amino
acid sequence length of the SSE) between the TOPS+
strings elements ti Î T and sj Î S given by,

D
t sk ssk

t sk s sk
1 1 


max( , )

(1)

where, tsk and ssk are the secondary structure length
for ti Î T and sj Î S respectively. The absolute differ-
ences of the total number of incoming, outgoing and
ligand arcs between the TOPS+ strings elements ti Î T
and sj Î S are computed based on the equations given
in Table 5. This process includes the computation of
the absolute arc differences for the incoming and out-
going arcs according to their ArcTypes {R, L, P, A}
between ti Î T and sj Î S of the TOPS+ strings
elements.
The absolute differences for total incoming arcs are

given by,

D t sI I2   (2)

where tI and sI are the total number of incoming arcs
of the TOPS+ strings elements ti Î T and sj Î S respec-
tively. The absolute arc differences between incoming
arcs, outgoing arcs and their arc types are calculated
based on Table 5.
Computation of Normalized Dissimilarity Score
We have combined the parameter tuning table PT and
the absolute arc differences to compute the final nor-
malized dissimilarity score mSn for the matching or
mismatching of the TOPS+ strings elements ti Î T and
sj Î S. The general formula for calculating the normal-
ized dissimilarity score is given in equation (3), where
all the weights wi are obtained from the parameter tun-
ing table PT; all the values for absolute arc differences

Table 5 Normalized similarity score between secondary structure elements.

Absolute Differences Equations Description

total incoming arcs D2 = |tI - sI| tI and sI are the total number of incoming arcs of the TOPS+ strings elements ti Î T and sj Î S
respectively

total incoming arcs
type_R

D3 = |tIR - sIR| tIR and sIR indicate the total number of incoming arcs type_R for ti Î T and sj Î S respectively

total incoming arcs
type_L

D4 = |tIL - sIL| tIL and sIL indicate the total number of incoming arcs type_L for ti Î T and sj Î S respectively

total incoming arcs
type_P

D5 = |tIP - sIP| tIP and sIP indicate the total number of incoming arcs type_P for ti Î T and sj Î S respectively

total incoming arcs
type_A

D6 = |tIA - sIA| tIA and sIA indicate the total number of incoming arcs type_A for ti Î T and sj Î S respectively

total outgoing arcs D7 = |tO - sO| tO and sO are the total number of outgoing arcs for the TOPS+ strings elements ti Î T and sj Î S
respectively

total outgoing arcs
type_R

D8 = |tOR - sOR| tOR and sOR indicate the total number of outgoing arcs type_R for ti Î T and sj Î S respectively

total outgoing arcs
type_L

D9 = |tOL - sOL| tOL and sOL indicate the total number of outgoing arcs type_L for ti Î T and sj Î S respectively

total outgoing arcs
type_P

D10 = |tOP -
sOP|

tOP and sOP indicate the total number of outgoing arcs type_P for ti Î T and sj Î S respectively

total outgoing arcs
type_A

D11 = |tOA -
sOA|

tOA and sOA indicate the total number of outgoing arcs type_A for ti Î T and sj Î S respectively

total ligand arcs D12 = |tL - sL| tL and sL are the total number of ligand arcs for the TOPS+ strings elements ti Î T and sj Î S
respectively

Equations used for computing the normalized similarity score between secondary structure elements of TOPS+ strings.
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Di are computed based on equation (2) and Table 5.
Since the SSETypes {H, h} do not have any Hbond arcs
{P, A}, we have substituted zero weights for correspond-
ing arc weights as follows: wIP = wIA = wOP = wOA = 0.
Note that this condition is applicable only when both ti
Î T and sj Î S have SSEType {H, h}. The final normal-
ized dissimilarity score for the helix SSETypes
helix_mSn is calculated using equation (5). A similar
condition is also applicable to the loops; they do not
have any other arcs except their ligand arcs and their
normalized similarity score loop_mSn is given by equa-
tion (6). The normalized dissimilarity score strand_mSn
for the beta strands is calculated using equation (4). For
all the other non-match SSEType we have considered
the weights obtained from the ISM or DSM scoring
matrices (see Table 4). When we applied these dissimi-
larity scores to loops we consider both ‘u’ (loop without
ligand interaction) and ‘U’ (loop with ligand interaction)
as identical. However when we perform ligand pattern
discovery in a different context (for instance, similar
ligand interaction on different fold types) for each SSE
we have considered them as different SSETypes [24].

mSn
wiDii

i

wii
i

 




1
12

1
12

(3)

strand mSn
wiDii
wii

_
{ , , , }

{ , , , }
 


5 6 10 11

5 6 10 11
(4)

helix mSn
wiDii
wii

_
{ , , , , , , , }

{ , , , , , , , }
 


1 2 3 4 7 8 9 12

1 2 3 4 7 8 9 12
(5)

loop mSn
w D w D

w w
_  


1 1 12 12

1 12
(6)

Computation of the Optimized Comparison Score (metric)
We have computed a pairwise comparison score based
on a compression measure (itself a metric) to evaluate
the goodness of patterns for a set of TOPS+ strings
models of the proteins. This procedure was adapted
from Brazma et al. [33] and has been employed in the
TOPS comparison and pattern discovery methods
[1,2,26]. We have calculated the compression value
based on the total number of proteins in the given set
(in this case there are two proteins), the total number of
SSEs in the proteins in the given input set and total
number of SSEs in the common pattern. Similarly, we
also take into account arc information such as total

number of in/out/ligand arcs in the given set of proteins
as well as the same information for the LCS pattern.
The raw compression value over SSEs is given as:

C S n SrSSE i P

i

i n

  




 ( )1
1

(7)

where, |Si| is the total number of SSEs in a protein i,
n is the total number of proteins in the target set and
|Sp| is the total number of SSEs in the LCS pattern. The
normalized compression score over SSEs, which varies
from 1 (best) to 0 (worst), is computed by:

C
n SP

Si i
i n Sii

i nnSSE 


 





( )

min

1

11
(8)

Similarly we compute the normalized compression
(nC) score for InArcs, OutArcs and LigandArcs. The
overall normalized TOPS+ comparison score for TOPS+
strings models is computed by (9), combining the com-
pression for the SSEs and arc type, optimized by differ-
ent weights k1, ... , k4 (see below).

C
k CnSSE k CnInArc k CnOutArc K CnLigArc

k k k knTOPS 
  

  
1 2 3 4

1 2 3 4
(9)

We have computed 17 different combinations of com-
pression values based on ED and LCS together with or
without different levels of SSEArc+ features information.
Supplementary Table 1 (see supplementary material
page at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/
optTOPSplus-results.html) gives all the 17 normalized
compression scores we have calculated based on ED and
LCS from our advanced TOPS+ comparison with (out-
put order of the results) and description.
We have performed training and analysis of our

advanced TOPS+ comparison method with the para-
meter tuning table. Our method incorporates parameter
optimization at two levels, both in the computation of
the dynamic programming table and in the computation
of the normalized compression measure. We have tested
our method with 1,134 unique basic parameter lists on
the training dataset of 7,000 random protein domain
pairs from the PDB40 dataset, which contain both
ligand-bound and ligand-free proteins. We validated our
results with the SCOP superfamily classification numbers
and obtained the ROC and AUC values corresponding to
each basic parameter list. The experimental testing and
evaluation analysis involved the following steps:

• Perform advanced TOPS+ comparison based on
the advanced_SSEArc+Match function for all basic
parameters in list Pb.
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• Compute ROC (Receiver Operating Characteristic)
curve analysis for all 7,000 results, and for each
parameter list.
• Calculate the AUC values corresponding to the 17
different nC scores.

We have obtained the 17 × 1, 134 AUC values and
we plot the results according to the SCOP classes 1-4,
which correspond to all-alpha, all-beta, alpha/beta and
alpha+beta, and all classes together. In Figure 5, the
x-axis represents the 1,134 parameters and the y-axis
denotes the AUC values corresponding to 17 nC scores
and for each of the SCOP classes all-alpha, all-beta,
alpha/beta, alpha+beta, and all classes (17 × 5 = 85
points). The color codes adjacent to the actual graph
indicate the range of AUC values between 0 and 1.
This corresponds to the percentage of accuracy where

0% is represented by blue and 100% by maroon. The
first 250 basic parameter lists give the best perfor-
mance for all the SCOP classes, and the AUC values
based on nCE again give consistently better perfor-
mance for all the parameter values compared to nC
scores based on LCS. Specifically, nCEnA(6), nCEnL(8)
and nCESAnL(10) give higher AUC values for all
SCOP classes and for all the parameter values; while
nCLnL(14) and nCLSAnL(16) give higher performance
for the all-alpha class. From the parameter tuning
table evaluation analysis we have found that the basic
parameter Pb [P92:3,1,1,1,1] always provides the best
result for our training dataset. So we have selected this
basic parameter as a default parameter for our adv-
TOPS+ method and performed further analysis and
produced the results for PDB40 and Chew-Kedem
datasets.

Figure 5 Parameter optimization results for SCOP classes. Parameter optimization experimental results for SCOP classes all-alpha, all-beta,
alpha/beta, alpha+beta, and all classes together. Each element in the matrix represents the AUC values based on the 17 nC scores
corresponding to the basic parameters. The x-axis represents 1,134 basic parameters and the y-axis represents the 17 nC scores from 1 through
17 represented in a block which is repeated five times along the y-axis and each block corresponding to the SCOP classes all-alpha, all-beta,
alpha/beta, alpha+beta, and all classes together.
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Datasets
PDB40 subset
We have considered the PDB40 representative subset of
4,261 protein domain pairs (which excludes the domain
pairs used in our training dataset) corresponding to
SCOP 1.61, see Table 6. These proteins contain both
ligand-bound and ligand-free protein domains. We have
compared our advanced TOPS+ method (based on basic
parameter value [P92:3,1,1,1,1]) with our basic TOPS+
and TOPS [3,26] methods. The basic TOPS+ compari-
son method computes the edit distance between two
proteins based on TOPS+ strings elements using a
dynamic programming approach.
Chew-Kedem dataset
We have considered the Chew and Kedem dataset [4,5]
to assess the biological significance of our advanced
TOPS+ comparison method. This dataset contains 36
medium size representative proteins of five different
families: globins (17 entries), alpha-beta (6 entries),
tim-barrels (4 entries), all-alpha (2 entries), and all-beta
(7 entries) proteins. We compared our method against
the SSAP structure alignment program [9,34,35] and
TOPS [3,26] and validated our results based on compu-
tation of the F-measure [20,21].

Evaluation Analysis
ROC and AUC Analysis
For the PDB40 dataset we have performed evaluation
analysis as given below:

• Obtain the pairwise comparison score from the
protein comparison method for a given dataset.
• Assignment of Homolog (TP, true positive) and non-
Homolog (FP, false positive) based on the SCOP super-
family numbers for each protein domain (see below)
and rank them according to the comparison score.
• Perform the Receiver Operating Characteristics
(ROC) curve analysis for equation (2). For all the
ROC curves we have computed the AUC (Area
Under the ROC Curve) values.

Homolog vs non-homolog assignment
We have considered the assignment of homologous or
non-homologous information of a protein domain pair,

based on the standard SCOP classification numbers at
superfamily level as an indication of structural homol-
ogy. If both protein domains belong to same superfamily
then they are homologous, otherwise they are non-
homologous.
F-measure validation analysis for the Chew-Kedem dataset
We have obtained all-against-all comparison scores from
all the comparison methods and based on these scores,
for each method, we performed pairwise hierarchical
clustering using the OC program [36]. We have evalu-
ated the biological significance of the clusters obtained
from different protein structure comparison methods
based on F-measure calculations [20,21].
Run Time Analysis
We performed all the analyses using a RedHat 7.2 linux
environment with an Intel Pentium IV 1.6 GHz proces-
sor. The methods SSAP, TOPS, TOPS+ and advTOPS+
took 9139 s, 75 s, 21 s and 1805 s (s = seconds) respec-
tively to complete 630 pairwise comparisons.
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