
Seagrass Canopy Photosynthetic Response Is a Function
of Canopy Density and Light Environment: A Model for
Amphibolis griffithii
John D. Hedley1*, Kathryn McMahon2, Peter Fearns3

1 Environmental Computer Science Ltd., Tiverton, Devon, United Kingdom, 2 School of Natural Sciences and Centre for Marine Ecosystems Research, Edith Cowan

University, Joondalup, Western Australia, 3Department of Imaging and Applied Physics, Curtin University of Technology, Perth, Western Australia

Abstract

A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the
consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state.
The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment
and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-
level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale
photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of
photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses
should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible
measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and
light environment. These plots can be used to interpret the significance of canopy changes induced as a response to
decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light
environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival.
By providing insight to these processes the methods developed here could be a valuable management tool for seagrass
conservation during dredging or other coastal developments.
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Introduction

Seagrass meadows are a dominant habitat of most coastal

environments and provide important ecosystem services such as

primary production, nutrient cycling, sediment stabilization, food

and habitat for other organisms and trophic transfers to adjacent

habitats [1]. Globally, these ecosystem services have been valued

at an approximated US$ 19000 ha21 yr21 [2] but emerging

understanding of the carbon storage capability of seagrass

meadows implies this may be an underestimate [3]. Despite these

recognized values, the area of seagrass is reducing world-wide at

an increasing rate. Waycott et al. [4] estimated 29% of the known

areal extent has disappeared since seagrass areas were initially

recorded in 1879, and the rate of decline has accelerated in the last

two decades.

The key anthropogenic pressures impacting seagrass meadows

at local scales are urban, industrial and agricultural runoff,

infrastructure development and dredging [5]. These pressures

impact seagrasses directly via physical removal or indirectly

through the introduction of pollutants such as nutrients, or

suspended sediments that result in a reduction of light reaching

seagrass meadows. Seagrasses are sensitive to light reduction as

they are typically adapted to high light environments [1].

Increasing research is being undertaken to improve the

management and conservation of seagrass meadows through

improved understanding of the risks they face (e.g. [6]), developing

bioindicators of the pressures they are exposed to [7] and

thresholds of stressors such as light reduction which may

differentiate sub-lethal effects from permanent loss of seagrass

[8,9]. In general, leaf-level photosynthetic activity in response to

irradiance follows a ‘photosynthesis versus irradiance curve’,

which is linear for subsaturating irradiances but becomes non-

linear, as progressively increasing irradiance causes saturation of

the photosynthetic electron transport chain, and finally attains a

plateau phase, which is defined as maximal photosynthesis rate

(Pmax) [10,11]. A key physiological parameter that represents a

species response to a given light level is Ek, defined as the

intersection between the initial linear slope and Pmax on a P-I

curve. Ek is frequently referred to as the ‘saturating irradiance’

[12,13] although technically it is slightly below the irradiance at
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which full photosynthetic saturation occurs, and above the

irradiance at which saturation starts to cause deviation from

linearity. Ek can be empirically determined and for each species

may vary over a restricted range due to physiological acclimati-

zation or factors such as temperature [14].

Various light threshold analyses have been proposed as having

predictive capability for seagrass mortality. Dependent on

available data, light levels can be assessed with respect to different

factors or components of the environment, including the water

column light attenuation coefficients [15] or Secchi disk depths

[16]; light at the top of the seagrass canopy expressed as

percentage of surface irradiance [17,18]; instantaneous or mean

daily irradiance [8,19] or the number of hours of irradiance above

Ek per day, Hsat, [8,20]. These thresholds can also be integrated

over time, which is relevant to management when pressures persist

over particular durations, e.g., dredging or flood plumes. The

percentage of days below a particular mean daily irradiance [8] or

the sum of the hours of irradiance below Ek compared to reference

conditions [9] are two examples for which thresholds have been

proposed to predict the onset of seagrass mortality.

One important component that all of these thresholds do not

consider is the interaction of the seagrass canopy itself with the

benthic light field, since it is the amount of light reaching

individual leaves of a seagrass that governs the plants photosyn-

thetic response [21]. The photosynthetic activity in turn influences

how the seagrass meadow responds to the changes in light [12]

and overall plant productivity [22]. Canopy structure of seagrass

meadows can also vary markedly due to natural variations in light

[23] or in response to light perturbations [9]. Due to canopy self-

shading, light levels at the top of the canopy may be very different

to light levels within the canopy, and will vary throughout the

canopy in a manner dependent on the incident benthic light field,

canopy structure and bending angle of the leaves, which vary

under water motion [24,25,26]. Therefore, a mechanistic expla-

nation of how light levels affect canopy sustainability must include

the interaction of the canopy structure with the incident light field.

In this study we developed a 3D model of a complex seagrass

canopy (Amphibolis griffithii) of varying structure, from low to

high leaf area index (LAI), by adapting the model described in [25]

and [27]. We modeled the exposure of these virtual canopies to a

number of environmentally relevant levels of light reduction to

assess the amount of light reaching each leaf surface and how this

varies under different canopy densities and positions due to

movement associated with water motion. Finally, we assessed the

canopy saturation state by relating the light each leaf receives to

values of leaf-level Ek for A. griffithii found in the literature. The

modeling scenarios were based on empirically quantified canopy

structures from specific plant morphologies, and were designed to

be comparable to a shading experiment that was conducted on A.
griffithii in 2005 [9].

In summary, the objectives were:

N To develop a 3D canopy model for a seagrass species with a

complex canopy, hence demonstrating an advance in technical

capability with respect to the simple Thalassia morphology

model of Hedley and Enrı́quez [25].

N To understand the consequences on within-canopy light

capture and canopy saturation state of 1) canopy position:

upright vs. moving under high wave action, 2) canopy

structure: low to high LAI (1.27 to 7.65), and 3) light

reduction: 0–95% shading

N To identify potential descriptors of canopy light levels which

could have use for the management of seagrass beds under

light reduction events such as dredging or coastal pollution.

Methods

Canopy structures
The modelling experiment was designed to mirror aspects of a

previously published empirical shading manipulation experiment

[9,28]. The empirical study utilised an extensive (.6 ha) meadow

of Amphibolis griffithii in 4.5 m water depth at Jurien Bay,

Western Australia (30u 189 340 S, 115u 009 260 E; WGS84 datum).

A control plus two-treatment shading experiment was conducted,

the first phase of which ran from 10th March to 14th June 2005.

Before and during the experiment individual A. griffithii plants

were sampled and characterised in terms of stem and branch

lengths, internodal distances, and number and dimensions of

terminal leaves (Fig. 1a).

In the computer model, ten sets of individual plant data from

the initial control sampling were replicated as vector mesh

structures (Fig. 1f). The model plants were assembled into five

canopies of leaf area index (LAI) from 1.27 to 7.65, by varying the

choice and number of plants in a 20 cm620 cm segment of

substrate (Table 1, Fig. 2). The leaves and stems of the vector

mesh structures were modelled as a point-mass and force system

according to methods typically used for modelling cloth in the

computer graphics industry [29]. A dynamic numerical integrator

modelled the plant structures flexing naturalistically under a

simple wave-action force model. Two wave actions, ‘high’ and

‘low’, were employed. In the dynamic model the low wave energy

treatment plants were allowed to assume a typical upright position

with no wave induced movement (Fig. 2). Under high wave energy

plants underwent a vigorous cycle of forward and backward

motion (Figs. 2f–i). From these dynamic models canopy structure

treatments were extracted as instantaneous snapshots for each of

the five LAI treatments: 1) a single snapshot for low wave action, 2)

14 snapshots through a cycle of movement for high wave action

(Fig. 2). The 14 snapshots for high wave action were individually

passed to the optical model (see below) and the results were

averaged, thereby assuming the canopies undergo this movement

continuously and photosynthetic response is the mean of the

responses at any instant in time.

Water column optical model and shading
The canopy structures were input to the optical model for

estimating diurnal leaf-incident irradiance. The model framework,

previously described in [27] and [25], propagates sky radiance

distributions through the canopy to give leaf incident irradiance in

17 wavebands of 20 nm width from 400–740 nm. Spectral

irradiance can then be reduced to photosynthetically available

radiation (PAR) at leaf level, and related to leaf tissue photosyn-

thetic saturating irradiance, approximated by Ek (Fig. 1). To

parameterise the model, hourly clear sky radiance distributions

were produced using libRadtran and a directional radiance model

[30,31] corresponding to the Jurien Bay site on 27th April; the

middle of the post summer 3 month trial phase in Lavery et al. [9]

(Fig. 1c).

The sky radiance distributions were input to PlanarRad (http://

www.planarrad.com), a plane parallel water column model

functionally similar to HydroLight [32,33] to estimate the hourly

top of canopy radiance distribution (Fig. 1e). The model provides

directional radiance tabulated over a hemisphere of zenith and

azimuth angles, but to remove any dependency on sun azimuth

and canopy orientation downwelling irradiances were azimuthally

averaged to have only a zenith angle dependency (Fig. 1c, e). The

water column utilised a library set of spectral inherent optical

properties (IOPs, for details see [34]) which when input to the

model produced a diffuse attenuation of planar PAR irradiance,
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kd, of approximately 0.2 m21. In comparison, kd values measured

at the time of the empirical shading experiment ranged from 0.07

to 0.19 over a four month period but were 0.19 in April

(Department of Parks and Wildlife, unpublished data). A set of

nine modelled shading treatments were implemented by taking the

top of canopy radiance distribution and reducing the values by

10%, 20%, etc. up to 95% (Table 1). Hence shading was spectrally

neutral as was the shade cloth used in Lavery et al. [9], where the

shading treatments were equivalent to 81–87% and 89–95% in

our notation. The empirical study therefore represented quite a

strong shading effect with respect to the modelled range. The

water column optical model was additionally evaluated by

comparing modelled top of canopy daily PAR irradiance against

in-situ measurements from the associated study [28].

Canopy structure optical model
The top of canopy irradiance was propagated through a

geometrical optics model [25,27] that accounts for inter-reflection

and transmission between leaf segments. The spectral reflectance

and transmittance of A. griffithii leaves was taken from the paper

of Durako [35]. In this study we did not attempt to capture inter or

intra-plant variability in leaf absorptance. This can be done [25],

but the data collection requirements are onerous. All surfaces were

considered Lambertian reflectors and transmitters. The underlying

substrate reflectance was set from a library sand spectral

reflectance that had a mean value of 0.33. The 20620 cm

modelled canopy segment was repeated periodically horizontally

so the modelled canopy was of uniform LAI and has no edge

(Fig. 1f).

Empirical measurements of PAR irradiance close to midday at

both the canopy top and on the substrate underneath canopies of

A. griffithii of differing LAIs were available for validation of the

canopy optical model from the study of McMahon and Lavery

[28]. Canopy transmission was measured in control and treatment

plots of varying but known LAI through measuring the

instantaneous photosynthetic photon flux density (PPFD, mmol

m22 s21) at the top and base of the canopy. The light sensor

(Odyssey PAR sensor) was calibrated against a standard calibra-

tion light source (Quartz Tungsten Halogen Reference Lamp

operated at 3150uK from a LI-1800-02 Optical Radiation

Calibrator). The low wave energy structure model treatments at

the hour closest to midday were used to perform this validation,

and a number of additional runs with different LAIs to those in

Table 1 were added to further populate the validation data. An

additional quality assurance protocol for the canopy optical model

is to set the within-canopy water absorptance to zero and then

verify energy conservation between the top of canopy incident and

exitant irradiances and energy absorbed by all surfaces in the

model [25]. This was performed for a subset of the runs in

Table 1.

Relation to photosynthetic properties
The model solution provided incident PAR at every point on

every leaf at a resolution of approximately 0.5 cm2. This was then

related to the leaf level saturation irradiance for A. griffithii,
approximated by Ek. Masini and Manning [12] evaluated Ek in A.
griffithii as ranging from 25 to 55 mmol quanta m22 s21 for

temperatures of 13uC to 23uC, of which the upper value is closer

to the conditions of the empirical data from the associated study

here. While Masini and Manning [12] did not assess physiological

variation in Ek in A. griffithii, in the same study Posidonia sinuosa
was shown to have Ek that varied from 50.4 to 39.1 mmol quanta

m22 s21 in depths of 4 m and 12–15 m respectively. Therefore to

accommodate a realistic variation in Ek in the absence of data, we

Figure 1. Overview of modelling system. (a, b) empirical data informs construction of 3D canopy model (f), (c, d, e) A plane-parallel model
estimates directional radiance incident on the top of the canopy, (f, g, h) a geometric optical model handles radiative transfer to and between leaf
segments, (i, j) PAR distribution over leaf area is reduced to the percentage of the canopy irradiated above leaf-level photosynthetic saturation, Ek.
doi:10.1371/journal.pone.0111454.g001
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have used the comparable range of 45–55 mmol quanta m22 s21

to put all of our results into the context of potential physiological

variation in Ek. To produce plots including the range and mid-

point specific values of 45, 50 and 55 were used. Based on the

value of Ek of 45 or 55 mmol quanta m22 s21, the model can

report the instantaneous proportion of the leaf area of the canopy

that is irradiated at or above the saturation irradiance. To

interpret these results, for each canopy structure and shading

treatment, a value termed HA
sat was calculated as the time integral

of the percentage leaf area above saturation in a 24 hour period,

with units % leaf area6hour. This measure is discussed later, but

was intended to be analogous to Hsat, the daily top of canopy

irradiated hours above saturation [9,20] but also factoring in the

canopy self-shading.

Figure 2. Example canopy structures and positions used in the model treatments. (a)–(e) low wave action canopy position for the five LAI
treatments A to E. (f)–(i) subset of time sequence positions under high wave action for canopy C, all 14 positions were used in the optical model. In all
cases the canopy structure is notionally repeated in all horizontal directions such that the square substrate section tessellates.
doi:10.1371/journal.pone.0111454.g002

Table 1. Modelling experiment design.

LAI Structure Shading (%) Hour

A 21.27 low wave energy (1 position) 0 612

B 21.94 high wave energy (14 positions) 10

C 23.15 25

D 25.00 40

E 27.65 50

60

70

85

95

A fully-factored set of model runs were performed for each of five LAI treatments, 15 canopy structures and nine shading treatments over 12 hourly diurnal intervals, a
total of 8100 runs.
doi:10.1371/journal.pone.0111454.t001
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Results

Optical model validation
The sky radiance and water column model produced a daily top

of canopy PAR dose of 11.0 mol quanta m22, whereas the

comparable in-situ measured average daily PAR irradiance over 3

months was 19.0 mol quanta m22 [9]. Since our study was

primarily concerned with the relative effect of the shading

treatments and LAI this discrepancy is not of great importance,

but could be due to: 1) the accuracy of the libRadtran sky radiance

model (no validation data available); 2) the accuracy of the

Odyssey PAR sensors, which can have issues in long-term stability

(Slivkoff, pers. comm.), or; 3) the model water column kd(PAR),

which was at the upper range compared to measurements taken

during the empirical study (0.2 vs. 0.070.19). This deviation in

kd(PAR) does provide an almost exact explanation for the

discrepancy, but since kd(PAR) is a wavelength-integrated output

of the model parameterised on spectral IOPs for absorption and

backscatter it is not trivial to set an arbitrary value of kd(PAR). In

the scope of this study, using the closest IOP set from actual

measured data [34] was considered adequate. In reality the daily

measured PAR was sometimes above and sometimes below the

model value, so all things considered the modelled canopy PAR

dose was reasonable and the discrepancy is inconsequential to the

subsequent interpretation of the results.

The percentage of the incident top of canopy PAR irradiance

transmitted to the substrate, as a function of leaf area index,

validated well against empirical data (Fig. 3). The empirical data

showed wide variation, but the modelled transmitted irradiances

corresponded very closely to the upper bound of the empirical

data. This is to be expected, since some of the real canopies

contained free standing and epiphytic macroalgae which would

have reduced the transmission beyond that described by the A.
griffithii LAI alone. The upper bound points most likely represent

the most monospecific A. griffithii canopies and correspond best

to the model. An exponential function fit to the model data

(n= 28) gave r2 of 0.96, the fit of all 27 empirical data points to

that same function gives an r2 of 0.73. However, if only four

outliers are removed (Fig. 3) the empirical data r2 rises to 0.90.

The model and empirical data therefore compare well, especially

given the practical difficulty in making accurate within-canopy

light measurements.

The performance of the model in terms of energy conservation

was demonstrated in the subset of runs for which water absorption

was set to zero. For the majority of runs energy losses were less

than 2% and for all runs they were less than 3%. In practice, when

water absorption is non-zero, energy conservation performance

would be better than these figures suggest. The current model

implementation requires water absorption to be set to zero for

energy accounting, but this in itself removes a damping effect on

the multiple scattering and increases energy losses through

numerical errors. Therefore the model solutions for leaf incident

irradiance can be considered, at worst, slight underestimates by

around 2%.

Effect of canopy structure and position on leaf level PAR
As expected, the distribution of leaf level PAR irradiance

became increasingly skewed to lower values as LAI increased

(Figs. 4a, e, i, m, q). In low LAI canopies the distribution of PAR

over leaf area was almost flat: leaf tissue received a wide range of

PAR with almost equal probability, and much of it was above

saturating irradiance at mid-day under the model conditions of

clear sky and moderately clear water. In denser canopies the leaf

level light distribution had a long high-end tail: many leaves

received light below Ek, but a few leaves received very high light

(Fig. 4i). Overall the pattern was clearly linked to the relative

openness or self-shading within the canopies. The range of Ek of

45 to 55 mmol quanta m22 s21 was generally small compared to

range of irradiances the leaves experienced, but this was more true

for the lower LAI and unshaded treatments (Fig. 4).

The treatments of canopy position of upright or moving under

wave action appeared to have little effect on leaf level PAR

irradiance (e.g. Fig. 4a vs. 4b). Numerically the canopy movement

slightly reduced the daily integrated percentage of saturated leaf

area for all but the lowest LAI (Fig. 5). However overall there was

not a statistically significant difference at either Ek of 45 or

55 mmol quanta m22 s21 (paired value t-test, p.0.05). Therefore

there is no evidence from our data that canopy movement affects

time-integrated light capture. However the instantaneous light

capture has a high variation under movement. While the standard

deviation was 10–20% of the mean (Fig. 5) at some individual time

points the saturated leaf area was up to 50% more or less than the

mean. As expected, shading scaled the x-axis position of leaf-level

irradiance distribution plots by the corresponding factor. That is,

halving the top of canopy irradiance halved the leaf level incident

irradiance at every leaf (Figs. 4b, d, f, h, etc.).

Diurnally accumulated saturated leaf area
The accumulated percentage of leaf area above saturation over

a twelve-hour day showed a complex relationship between both

shading and LAI (Fig. 6). While, as expected, increasing either

shading or LAI monotonically decreased the accumulated

percentage of leaf area above saturation, the shape of the function

was non-linear and there was an interaction between shading and

LAI (Fig. 6a). The contour lines in Figure 6a make clear the trade-

Figure 3. Percentage of downwelling top of canopy PAR
irradiance reaching the substrate, as a function of LAI. Results
for empirical in-situ measurements (data 1 and 2) and modelled
estimates (model) are shown. Curve fit to model data points is y=100 *
exp(20.296LAI).6(data 2) - are 26 individual coincident measurements
of LAI and irradiance above and below the canopy. ^ (data 1) is a
single point based on a site mean of 13 LAI determinations from 2.84 to
4.09 and a set of associated but not spatially co-incident light
measurements, error bars are one S.D. The four encircled points are
the outliers referred to in the text. Transmittance data collection is
described in McMahon and Lavery 2014 and corresponding LAI is
unpublished data from Lavery et al. 2009. N are 25 model runs
including both those described in detail and some additional runs. In
the models runs solar zenith angle was approximately 28u.
doi:10.1371/journal.pone.0111454.g003
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off between leaf area index and light with respect to the saturation

state of the canopy. These lines show equal points in the LAI–

shading function space, so for example a canopy of LAI 5.5 with

no shading was equivalent to LAI 2.0 with 50% shading, with

respect to the diurnally accumulated saturation of relative leaf

area. The potential acclimation range of Ek from 45 to 55 mmol

quanta m22 s21 (assuming water temperature at approx. 23uC)

added a degree of freedom to the LAI-shading relationship

approximately equivalent to 1 unit of LAI at low shading (e.g.

along the x-axis of Fig. 6a), but this increased as shading increased

to 60% or more (Fig. 6a). Therefore at low shading modifying Ek

over the suggested range is equivalent to changing LAI by plus or

minus one half.

For the high wave action treatment there is a small qualitative

difference in the position of the contour lines in low LAI and low

shading region as compared to the upright low wave action

treatment (Fig. 6b vs. 6a). However a sensitivity analysis of the

data tables underlying Figures 6a and 6b showed that these

differences are equivalent to an error in the shading percentage of

only 6 points or less. In other words, if in a practical application

shading were quantified at discrete levels of 0, 5, 10, 15% etc. then

the difference between upright and moving canopies would be

negligible.

Discussion

Geometric optical modelling of seagrass canopies and
validation

In terms of the geometrical optical modelling of seagrass

canopies, the results presented here corroborate those of Hedley

and Enrı́quez [25], showing that it is possible to construct a

physical three dimensional model of a seagrass canopy and obtain

acceptable validation against in-situ light measurements.

Through-canopy transmission was estimated accurately for pure

Amphibolis canopies, but the importance of considering epiphytes

or other canopy constituents was underlined by the high variability

of the empirical data, which in some cases had lower light

penetration than the model predicted based on Amphibolis LAI

alone.

With respect to morphological complexity, A. griffithii is on the

more complex end of the spectrum in comparison to strap leaf

morphologies of Thalassia and many other seagrass species [36],

to which this modelling framework was previously confined.

Figure 4. Distribution of leaf saturation state in the canopy in terms of percentage of leaf area at midday. Treatments are upright low
wave action canopy positions and the average over the high wave action movement positions (left columns), and the same for 50% shading (right
columns), for the five LAI treatments. The estimated photosynthetic saturation irradiances, Ek, of 45 and 55 mmol quanta m22 s21 inferred from
Masini and Manning (1997) are shown as vertical dotted lines.
doi:10.1371/journal.pone.0111454.g004

Figure 5. Time accumulated percentage of leaf area irradiated
above photosynthetic saturation irradiance for low wave
action and high wave action treatments, for Ek of 45 and
55 mmol quanta m22 s21. Error bars on high wave action treatment
are the standard deviation over all 14 movement positions and hence
indicate the range in the instantaneous canopy saturation state.
doi:10.1371/journal.pone.0111454.g005
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Therefore the potential for future models of other seagrass species

is good as these two examples capture the range in canopy

complexity. Hedley and Enrı́quez [25] used profiles of light

through the canopy to derive a diffuse attenuation profile, kd, for

validation. In this study only light measurements at the top and

bottom of the canopy were available. However, this simpler

validation may be preferable and adequate. In practice, empirical

measurements of light profiles within canopies are difficult to

make, and rarely fit well to exponential attenuation with depth.

The measurements at the top and bottom of the canopy are the

strongest ‘‘signal’’ for within-canopy attenuation and can be used

to derive kd if canopy height is known. So in future empirical work

to which such modelling may be subsequently applied, we

recommend measuring downwelling irradiance at the top and

bottom of canopies, together with canopy height and LAI.

Influence of shading, LAI and position on diurnal leaf
photosynthetic saturation

The previous empirical shading study on A. griffithii [9]

quantified the change in Hsat induced by shading, i.e. the total

number of hours of top-of-canopy irradiance that was above

photosynthetic saturation, as compared to the unshaded treat-

ments. This quantity, summed over time, was demonstrated as a

good indicator of changes in canopy biomass and capacity for

subsequent recovery. However Hsat relates the top of canopy

irradiance to leaf-level photosynthetic saturation irradiance and so

ignores canopy self-shading and other structural factors, which

therefore introduce an additional degree of freedom. Here, we

factor in the canopy structure by considering the percentage of the

canopy leaf area above saturating irradiance accumulated over

time, HA
sat, with units of % leaf area6hour. This descriptor

extends Hsat by reducing to a single number the interaction of the

duration of saturating irradiance and the canopy self-shading. It

can be roughly interpreted as the daily ratio of saturated

photosynthesis to leaf area at canopy scale, and ranges from 0 to

1200 for plants completely saturated for 12 hours of daylight.

Considering the variation in HA
sat with leaf area index and

shading, as expected LAI has a strong effect on diurnal leaf

saturation state (Fig. 6.). A change in LAI from 1 to 7 has as much

effect as 60% shading (Fig. 6a), so the ambient light field cannot be

treated independently from the canopy structure when photosyn-

thetic processes at leaf level are of interest. Furthermore, the

relationship between LAI and both shading and leaf saturation

state is a non-linear interaction; Figure 6 represents a curved

surface in both axes of shading and LAI. This occurs because

while leaf level irradiance is a linear function of canopy level

irradiance, the leaf level photosynthetic response is not a linear

function of irradiance when the irradiance approaches or exceeds

Ek. As leaf level irradiance approaches and exceeds Ek the

photosynthetic response levels off at Pmax. In general, since

photosynthesis versus irradiance curves are non-linear in the

region of the saturating irradiance any derived measure of leaf

level photosynthetic activity will have a complex relationship with

LAI unless all leaves are well below saturating irradiance.

Within this study there is no statistically significant evidence to

support the statement that canopy movement effects light capture

and photosynthetic response. Qualitatively it is interesting that

under movement the lowest LAI canopy experienced an increase

in daily saturation whereas the higher LAI canopies were

systematically lower (Fig. 5). To test the statistical significance of

this observation would require substantial further modelling effort

and was outside the scope of this study, however at low LAIs

sideways movement may serve to enhance light collection by

spreading leaves out horizontally and making them insensitive to

the directionality of incident light. Under wave action such

flattening is intermittent and as we have shown here is not a factor

of great photosynthetic significance. Additionally, under these

conditions the optical consequences of surface waves and sediment

resuspension should also be considered and may be more

significant [37]. However, in other systems and species, canopy

flattening can be a result of shallow water depth or tidal or

estuarine flow [38]. In this case the semi-constant flattening of the

canopy may be of optical significance.

Potential for LAI modification as an acclimation response
Figure 6 indicates that modification of LAI is a possible

response to maintain the saturation state of the canopy under

reduced or enhanced light conditions. This role of morphological

plasticity has been demonstrated in a number of experimental

studies (e.g. [39]) and hypothesized as a regulatory mechanism in

Thalassia [13]. From our model data (Fig. 6), if a canopy of LAI 7

is observed to reduce to LAI 4 after a period of 40% reduction in

light, this loss of biomass might be interpreted as a trajectory of

canopy decline but alternative interpretation is that of an

acclimation response to maintain the leaf level photosynthetic

state. This interpretation is independent of the mechanism by

which it occurs. Leaf mortality might be considered just a by-

Figure 6. Time accumulated percentage of leaf area irradiated above photosynthetic saturation irradiance. The colour scale shows
HA

sat, the ‘‘percentage leaf area hours’’ above Ek, as a function of LAI and shading. (a) is for upright low wave action canopy structures, (b) is for the
average over the high wave energy canopy positions. Contour lines are isoclines based on the mid value of Ek equal to 50 mmol quanta m22 s21

while the surrounding greyed region shows the limits for Ek of 45 to 55 mmol quanta m22 s21. The isoclines are located at HA
sat of 50, 100, 200, and

then steps of 100 up to 800% leaf area hours.
doi:10.1371/journal.pone.0111454.g006
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product of inadequate light to maintain respiration, but if the net

effect is a return to an unstressed leaf-level light regime then the

distinction between a compensatory morphological adjustment

and a decline is at best ambiguous. This argument is of course

dependent on the definition of ‘decline’; it does not apply if net

productivity per unit area rather than biomass is the criteria. Here,

by ‘decline’ we mean an implied trajectory toward canopy

eradication.

Under the interpretation of potential acclimation a key question

is whether the reduction in LAI remains on the isocline for canopy

saturation state (i.e. the contour lines in Fig. 6). A canopy that

moves on a trajectory through LAI–shading ‘space’ such that it

stays on a contour line is experiencing the same time integrated

percentage of its leaf area at saturating irradiance (see A to E in

Fig. 7). That is, it experiences the same daily photosynthetic

saturation in relation to its leaf biomass. We might therefore

hypothesise that if a canopy can sustainably exist at one point on

an HA
sat isocline, canopies can also sustainably exist at other points

on that line, all other things being equal. Movement along an

isocline can occur purely by modification of the LAI, alternative

acclimation responses such as modification of Ek at the leaf-level

will enable movement perpendicular to the isoclines, illustrated by

the range around the isoclines in Figures 6 and 7 delimited by Ek

of 45 to 55 mmol quanta m22 s21. Ignoring the latter possibility,

and focussing on LAI modification alone, the prospects for long

term survival of a canopy under a change in light environment can

be estimated by following the isocline from its current location in

LAI-shading space to the new light environment (y-axis) location.

If at this location the LAI is greater than zero (judged by

extrapolation), then the canopy could survive by thinning out to

this LAI, at which point it will have the same relative

photosynthetic saturation of its leaf area. In the following section

we use this concept to interpret the results from the previous

empirical shading experiment [9].

Canopy trajectories in LAI and shading space
In the post-summer treatment of the shading experiment of

Lavery et al. [9] canopies with an LAI of ,4 had reduced to an

LAI of ,2 after three months of 84% shading. This change in LAI

and shading can be represented as a trajectory on the HA
sat map:

Figure 7, point A to B. At 6 months of shading the LAI had

reduced to one and by 9 months the canopy was almost eradicated

and did not subsequently recover (Fig. 7, point C). Assuming for

the moment that HA
sat, the accumulated percentage area of leaf

saturation above Ek, is a measure relevant to canopy sustainability

then Figure 7 indicates that such a measure could have predictive

power for canopy survival. In the previous section we postulated

that canopies can move along the isoclines by modification of LAI

alone. The initial reduction of LAI in the empirical data (Fig. 7,

point A to B) occurred in the first three months in response to 84%

shading. The trajectory cuts across the isoclines because there is a

time lag as the canopy cannot become thinner instantaneously. At

three months (Fig. 7, point B) the LAI has reduced to 2 but the

shading is extreme so at the leaf level the light environment is still

very much reduced. There can be two response pathways, either

physiological changes may allow the canopy to exist on the new

isocline, such as the mobilisation of stored reserves [40] or

reductions in the saturating irradiance [23], or if such processes

cannot bring about sufficient change then further LAI reduction is

required in an attempt to return to an isocline closer to the

original. In this case following the isocline to the right and

extrapolating to the intercept with the x-axis it is clear that the

light environment is equivalent to a canopy with huge LAI of at

least 20+ in the original un-shaded situation. For the canopy to

survive would require physiological changes that would permit

canopies of these high LAIs to exist normally in this environment.

Such canopies did not exist, hence physiological changes are

insufficient (it is clear from Fig. 7 that variation in Ek is

inadequate), hence the LAI continued to decrease and eventually

the canopy was eradicated (Fig. 6, Point C).

The previous example is a straightforward case of severe light

limitation, but with moderate shading (for example 40%, Fig. 7)

the situation is more complicated. The empirical data of Lavery

et al. [9] only contained shading at a minimum of 81% so the

example of 40% in Figure 7 is hypothetical. If a situation of 40%

shading is introduced, assuming the validity of HA
sat, it is clear that

the canopy could survive by reducing LAI from 4 to 1 (moving

along the isocline from point A to point E, Fig. 7). However,

because of the time lag in reducing LAI, an initial trajectory in

which LAI partially reduces (A to D, Fig. 7) is realistic and is likely

to include physiological responses in tandem. For example Ek

could decrease, but at LAI around 3 the range of Ek from 45 to 55

only allows accommodation of up to 20% shading at the most

(Fig. 7). The existence of a time lag is supported by studies on

different seagrass species that have incorporated less extreme

shading treatments over short time-scales; physiological changes

such as increases in chlorophyll and reduction in LAI occur after

longer durations of reduced light [39]. At point D in Figure 7 the

canopy lies on an isocline that represents a canopy of LAI 5.5 in

the unshaded environment. If such canopies can sustainably exist,

at the same depth, water clarity etc. then the canopy may survive

at LAI of 2 to 3 (point D), rather than reducing LAI to 1 (point E).

Either way, Figure 7 has predictive power for the canopy response

in that if it is anticipated a 40% shading event may occur, e.g.,

from dredging activities, then it is clear that a canopy that is

sustainable at LAI of 4 could reduce to LAI of 1, or, could induce

physiological changes to maintain an LAI higher than 1, but in the

latter case only if canopies greater than LAI of 4 currently exist in

that environment.

The possible trajectories in LAI-shading space of Figure 7 are

dependent on the capability and time constants of other

physiological acclimation mechanisms. These mechanisms could

include adjustments to photosystem kinetics to increase the

efficiency (i.e. lower Ek), increases in chlorophyll content and a:b

ratio to enhance light capture, or mobilisation of stored

carbohydrates for maintenance and growth of the existing leaf

Figure 7. Trajectories of canopies from empirical shading
experiment and hypothetical example. Underlying plot is as
described in the caption of Figure 6a.
doi:10.1371/journal.pone.0111454.g007

Seagrass Canopy Photosynthetic Response and Canopy Density

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e111454



biomass [7]. To our knowledge there is no published data on

photo-acclimation in A. griffithii under changing light conditions.

However, unpublished data by co-author McMahon shows that

under high levels of shading there are reductions in the saturating

irradiance and other photo-acclimation responses, which maintain

electron transport rates at unshaded values, but there is a time-

limit over which this photo-acclimation is maintained of around

21 days. Therefore, the model as we have developed here is very

relevant for predicting impacts associated with longer term

reductions in light of over three weeks or more.

Other measures of canopy scale photosynthetic response
to light

In the previous discussion we have assumed that the concept of

isoclines of equal light environment’ with respect to HA
sat is valid.

Alternative measures may be more appropriate but this does not

affect the primary concept that canopy self-shading can be

equivalent to environmental shading, and that there are two

mechanisms of photosynthetic acclimation: physiological and via

canopy structure. Any alternative measure of the photosyntheti-

cally relevant light environment would likely have a similar form to

that of Figures 6 and 7. The interaction of self-shading and the

non-linearity of leaf-level photosynthesis must inevitably result in a

complex canopy scale response to LAI and the light environment

for all canopies that are subjected to irradiances above photosyn-

thetic saturation. Another candidate measure would be the

integration of photosynthesis over time, i.e. to propagate the

leaf-level light through a photosynthesis versus irradiance (P-I)

curve to give an integrated photosynthesis measure equivalent to

mmol O2 evolution. In addition, plots of actual top of canopy PAR

light levels may have greater descriptive power than percentage

shading (Figures 6 and 7). Lavery et al. [9] observed different

canopy changes at similar shading levels and interpreted these as

being due to differences in the absolute light levels. In this study we

suggested HA
sat as a simple extension of the top-of canopy Hsat,

since that measure has been demonstrated to have predictive

power for canopy sustainability [8,9] and has been used in

management contexts, and percentage shading was employed as a

mirror of the empirical treatments. Clearly, there are many

opportunities for further experiments and modelling to determine

the most relevant measure of canopy photosynthetic response, the

key point being that that measure needs to include within-canopy

light propagation.

Conclusions

Three dimensional canopy modelling of Amphibolis griffithii
has revealed that the interaction of light levels and canopy density

on canopy-scale photosynthetic activity is complex and non-linear,

in particular due to the non-linearity of leaf-level photosynthesis at

saturating irradiance. The accumulated percentage area of leaf

saturation above saturating irradiance, HA
sat, was proposed as a

measure relevant to canopy sustainability, based on extension of

the equivalent top-of-canopy measure Hsat that has previously

proved useful. The available empirical data were not sufficient to

evaluate the efficacy of HA
sat due to lack of lower shading

treatments. Evaluating this measure and other candidates such as

integrated leaf-level photosynthesis requires further experimental

work. Nevertheless the principle has been demonstrated that plots

of equal light environment’ (Fig. 6) produced for different seagrass

species, water depths, and water column optical properties could

have practical management applications for predicting and

interpreting canopy changes under light reduction events.

Reduction in seagrass density in response to shading must be

interpreted in terms of the leaf-level light environment. While

physiological responses are also important, existing canopies in the

same environment can provide information of the limits of

physiological acclimation, and indicate if change in light levels will

induce a trajectory to steady state sustainability, or to eradication.

An important future step is to understand the time constants in

change and recovery trajectories, to determine how long shading

events can be tolerated and the required recovery periods. This

information will be invaluable to coastal management.
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