39 research outputs found

    Apparatus for diagnostic image acquisition determination

    Get PDF
    The present invention relates to an apparatus (10) for diagnostic image acquisition, comprising: an input unit (20); a processing unit (30); and an output unit (40). The input unit is configured to receive a data value relating to at least one biomarker in a measurement blood sample of a patient. The processing unit is configured to determine a time to acquire a diagnostic image of the patient, wherein the determination comprises utilization of the data value. The output unit is configured to output an indication of the time to acquire the diagnostic image of the patien

    Anti-angiogenic nanotherapy inhibits airway remodeling and hyper-responsiveness of dust mite triggered asthma in the Brown Norway rat

    Get PDF
    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via α(v)ÎČ(3)-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of α(v)ÎČ(3)-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous (19)F/(1)H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (α(v)ÎČ(3)-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving α(v)ÎČ(3)-No-Drug micelles while α(v)ÎČ(3)-Dxtl-PD or α(v)ÎČ(3)-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but α(v)ÎČ(3)(+ )macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the α(v)ÎČ(3)-Dxtl-PD micelles. Additionally, α(v)ÎČ(3)-Dxtl-PD decreased BAL eosinophil and α(v)ÎČ(3)(+ )CD45(+) leukocytes relative to α(v)ÎČ(3)-No-Drug micelles, whereas α(v)ÎČ(3)-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a clinically relevant rodent model

    Historische Grundwissenschaften und die digitale Herausforderung

    Get PDF
    Unter FederfĂŒhrung von Eva Schlotheuber (Heinrich-Heine-UniversitĂ€t DĂŒsseldorf / VHD-Unterausschuss "Geschichte in der digitalen Welt") und Frank Bösch (Zentrum fĂŒr die Zeithistorische Forschungen Potsdam / VHD-Unterausschuss "Audiovisuelle Quellen") verabschiedete der VHD ein Grundsatzpapier zum Status der Historischen Grundwissenschaften mit dem Titel "Quellenkritik im digitalen Zeitalter: Die Historischen Grundwissenschaften als zentrale Kompetenz der Geschichtswissenschaft und benachbarter FĂ€cher". Das Grundsatzpapier, in dem auch ein forschungsstrategisches Interesse an den Grundwissenschaften in der digitalen Transformation zum Ausdruck kommt, wurde auf H-Soz-Kult veröffentlicht und mit einem Diskussionsforum begleitet. Dazu wurde aus dem breiten Spektrum der Historischen Kulturwissenschaften eine Reihe in- und auslĂ€ndischer Kolleginnen und Kollegen zur Kommentierung und Diskussion eingeladen, um die Debatte zu stimulieren

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    Abstract The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared to information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known non-pathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification. This article is protected by copyright. All rights reserved.Peer reviewe
    corecore