167 research outputs found

    Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis induced in dairy cows with Escherichia coli.

    Get PDF
    Four to 6 wk after parturition, 12 cows in second, fourth, or fifth lactation were experimentally infected in one gland with Escherichia coli. The capacity of chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors to predict the severity of IMI was measured. Bacterial counts in the infected quarter, expressed as area under the curve, and residual milk production in the uninfected quarters were compared to determine severity of the infection. Although these two outcome parameters were highly negatively correlated, regression models with preinfection tests for leukocyte function fitted best with bacterial counts as an outcome parameter. Of the preinfection tests for leukocyte function, chemotaxis best predicted the outcome of the IMI that had been experimentally induced by E. coli. The number of circulating peripheral leukocytes just prior to inoculation was used to predict 52 and 45% of the severity of IMI for bacterial counts and residual milk production, respectively. As a categorical variable, parity predicted 75 and 56% of the severity of IMI expressed as bacterial counts and residual milk production, respectively. Because of the strong effect of parity on the outcome of the experimentally induced mastitis, analysis was performed to discriminate between second parity cows and older cows. Significant differences were found for the number of circulating peripheral leukocytes and for the expression of CD11b/CDl8 and CD11c/CD18 receptors between younger and older cows

    Blood polymorphonuclear leukocyte chemotaxis during experimental escherichia-coli bovine mastitis.

    Get PDF
    The relationship between the severity of experimental Escherichia coli mastitis and the chemotactic response of blood polymorphonuclear leukocytes was investigated before and during mastitis. Experimental E. coli mastitis was induced in 10 healthy cows by inoculation of the rear right quarters with 10(3) cfu of E. coli. Cows were classified into two groups based on the severity of the mastitis. Bacterial growth in the inoculated quarter was used as parameter that indicated severity. Before and during experimental mastitis, the chemotactic response and the number of circulating polymorphonuclear leukocytes were greater for the moderately diseased cows than for the severely diseased cows. During the first 24 h of the experimental mastitis, the chemotactic response of polymorphonuclear leukocytes decreased in both groups. Recovery of the chemotactic response of white blood cells was more rapid in moderately diseased cows than in severely diseased cows. Possibly, the larger proportion of band neutrophils (the less chemotactically active band neutrophils) partially accounts for the lower chemotactic response of the circulating polymorphonuclear leukocytes during experimental mastitis in the severely diseased cows

    Measurement of the solenoid magnetic field

    Get PDF
    We describe the machine used to map the solenoid field and the data sets that were collected. The bulk of the note describes the analysis of this data. A series of small corrections are made; some taken from surveys and some derived from the data itself. Two fitting methods are defined and applied to all data sets. The final result is that the field map at normal operating current can be fitted to a function that obeys Maxwell with an r.m.s. residual of less than 5 Gauss. Systematic errors on the measurement of track sagitta due to the field uncertainty are estimated to be in the range 2.3E-4 to 12E-4, depending on the track rapidity. Finally, the representation of the map in Athena is briefly described

    High-impact animal health research conducted at the USDA’s National Animal Disease Center

    Get PDF
    Commissioned by President Dwight Eisenhower in 1958 and opened with a dedication ceremony in December 1961, the USDA, Agricultural Research Service (ARS), National Animal Disease Center (NADC) celebrated its 50-year anniversary in November 2011. Over these 50 years, the NADC established itself among the world’s premier animal health research centers. Its historic mission has been to conduct basic and applied research on selected endemic diseases of economic importance to the U.S. livestock and poultry industries. Research from NADC has impacted control or management efforts on nearly every major animal disease in the United States since 1961. For example, diagnostic tests and vaccines developed by NADC scientists to detect and prevent hog cholera were integral in the ultimate eradication of this costly swine disease from the U.S. Most major veterinary vaccines for critical diseases such as brucellosis and leptospirosis in cattle, porcine respiratory and reproductive syndrome (PRRS), porcine parvovirus and influenza in swine had their research origins or were developed and tested at the NADC. Additional discoveries made by NADC scientists have also resulted in the development of a nutritional approach and feed additives to prevent milk fever in transition dairy cattle. More recently, NADC’s archive of historic swine influenza viruses combined with an established critical mass of influenza research expertise enabled NADC researchers to lead an effective national research response to the pandemic associated with the novel 2009 H1N1 influenza virus. This review commemorates some of the key animal health contributions in NADC’s first 50 years, recaps the newly completed modernization of the center into new facilities, and offers highlights of the ongoing research that will define NADC’s mission going forward

    Measurement of the ATLAS solenoid magnetic field

    Get PDF
    ATLAS is a general purpose detector designed to explore a wide range of physics at the Large Hadron Collider. At the centre of ATLAS is a tracking detector in a 2 T solenoidal magnetic field. This paper describes the machine built to map the field, the data analysis methods, the final results, and their estimated uncertainties. The remotely controlled mapping machine used pneumatic motors with feedback from optical encoders to scan an array of Hall probes over the field volume and log data at more than 20 000 points in a few hours. The data were analysed, making full use of the physical constraints on the field and of our knowledge of the solenoid coil geometry. After a series of small corrections derived from the data itself, the resulting maps were fitted with a function obeying Maxwell's equations. The fit residuals had an r.m.s. less than 0.5 mT and the systematic error on the measurement of track sagitta due to the field uncertainty was estimated to be in the range 0.02 % to 0.12 % depending on the track rapidity
    • …
    corecore