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Abstract 
 

We describe the machine used to map the solenoid field and the data sets that were 
collected. The bulk of the note describes the analysis of this data. A series of small 
corrections are made; some taken from surveys and some derived from the data itself. 
Two fitting methods are defined and applied to all data sets. The final result is that the 
field map at normal operating current can be fitted to a function that obeys Maxwell 
with an r.m.s. residual of less than 5 Gauss. Systematic errors on the measurement of 
track sagitta due to the field uncertainty are estimated to be in the range 2.3 × 10-4 to 
12 × 10-4, depending on the track rapidity. Finally, the representation of the map in 
Athena is briefly described. 
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1. Introduction 
The Inner Detector (ID) magnetic field is produced by a superconducting solenoid 
[10] of radius 1.247 m, length 5.283 m, having 1154 turns which generates a field of  
2 T at the centre when supplied with 7730 A. A flux return path is provided by the 
iron of the Tile Calorimeter. Since the solenoid is shorter than the ID and the 
calorimeter is at high radius, the field drops steeply from ~1.8 T at Z = 1.7 m to ~0.9 
T at the end tracking volume. Almost 96% of the field is directly due to the current in 
the solenoid with the remainder being due to the magnetised iron of the Tile 
Calorimeter.  
 
2. Required map accuracy and aims 
Since Atlas is searching for new physics it is hard to say what accuracy will be needed 
on momentum measurement. We have therefore taken measurement of the W mass, 
that continues to be an important parameter, as the criterion to set our requirements. 
Muons and electrons from W decay have typical transverse momentum of 40 GeV, 
which gives them a sagitta of 1.1 mm in a radial path of 0.8 m in a 2 T field. The 
momentum scale of these tracks is limited by our understanding of the ID alignment 
and magnetic field. Of these two, alignment is by far the more difficult to get right 
and we believe that there will be irreducible alignment errors at the 1 micron level, or 
0.1% of the sagitta. In order to give ourselves the best possible chance of 
understanding alignment down to this level we would like the magnetic field to be 
known to somewhat better accuracy, so we set a target of 0.05% for the uncertainty of 
track sagitta due to the field.  
 
In addition to mapping the solenoid field with 0.05% accuracy at nominal current at 
one moment in time, we also need to understand the effects listed below to the same 
accuracy so that we can predict the field during physics running.  

• Hysteresis – does the iron have any memory of its past magnetisation history. 
• Saturation – if we are forced for some reason to run with a different current is 

there any deviation from linearity between field and current due to iron 
saturation. 

• Toroid effect – the solenoid and the barrel toroid compete for the available 
magnetisability of the TileCal girders. Simulations show that this will lead to a 
small decrease of the solenoid field when the barrel toroid is turned on. 

• JD disc – the JD shielding discs were not present when the solenoid was 
mapped. They are expected to cause a small perturbation to the solenoid field 
at the ends. 

Hysteresis and saturation were measured during the mapping campaign and are 
reported in this note, while the toroid and JD effects will be determined by future 
simulations and measurements. 
 
3. Apparatus 
The mapping machine was designed to scan an array of Hall probes [11] over a 
volume slightly larger than that which will later be occupied by the Inner Detector. 
The machine had four arms mounted on a common axle in a windmill configuration. 
The axle was supported by a carriage that rode on the ID rails. The axle could be 
rotated and the carriage moved along the rails by means of pneumatic motors. Optical 
encoders allowed control of the machine movements and readout of its stop positions 
with an accuracy of ~0.1 mm. Each arm held 12 Hall cards at radii ranging from 0.118 
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to 1.058 m. Each Hall card contained three sensors to measure the field components 
Bz, Br and Bφ.  
In addition to the mapping machine we have four NMR probes fixed to the wall of the 
ID volume at z=0. They provide highly accurate measurements of the field magnitude 
at these four points. 
 

 
Figure 3.1. The mapping machine installed in the Inner Detector cavity, viewed from end A. 

 
 
4. Scan Data  
The field was mapped in early August 2006. During mapping the complete TileCal 
was present in its final position but the JD shielding discs were not present and the 
toroids were not yet commissioned. The ID was obviously not present but parts of its 
services were installed, however they are not supposed to contain any significant 
magnetic materials so this should not matter. 
The field was mapped with the solenoid current at 7730, 7850, 7000 and 5000 A, with 
a final map back at the nominal operating current of 7730 A. The actual current values 
as measured by the DCCT [9] differ marginally from these at 7729.995, 7849.985, 
6999.980 and 4999.982 A. In this analysis we use the exact values but refer to them 
by the round numbers. Each map took about 4 hours and the solenoid current was 
stable to much better than 0.1 A during this time. Each data set contained at least 
20000 points, sometimes many more, and each is sufficient to fit the field with 
negligible statistical uncertainty. 
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Date Current Name Files Nφ Nz Zmin Zmax
2/8/06 7730 Map7730a CorrC7n02003 ~2005 

~3007 ~3010 ~3024 
~3028 

16 66 -2.67 2.73 

2/8/06 7730 Pzero7730a CorrC7n02001 16   4 -0.25 0.25 
3/8/06 7730 FineZ7730a CorrC7n03009 16 10 -0.25 0.25 
3/8/06 7730 FineF7730a CorrC7n03015 64   1   0.0   0.0 
4/8/06 5000 Map5000 CorrC7c03030 ~3031 

~4001 ~4004 ~4005 
~4006 

16 63 -2.62 2.61 

4/8/06 5000 Pzero5000 CorrC7c03029 16   4 -0.25 0.25 
4/8/06 5000 FineZ5000 CorrC7c04002 16 10 -0.25 0.25 
4/8/06 5000 FineF5000 CorrC7c04003 64   1   0.0   0.0 
4/8/06 7850 Map7850 CorrC7h04003 16 21 -2.32 2.32 
4/8/06 7000 Map7000 CorrC7l04001 ~4002 

~4004 ~4006 
16 36 -2.62 2.62 

4/8/06 0 Map0 CorrCz03020 8 11 -2.5 2.5 
7/8/06 7730 Map7730b CorrC7n07029 ~7040  24 31 -2.35 2.74 
Table 4.1. The data sets used in this analysis. Those named ‘Map’ cover the whole volume and 
are used to make field maps, while other names indicate data used for special studies. The files 
names refer to the publicly available data [7]. Columns Nφ , Nz , Zmin and Zmax refer to the range 

of positions taken by the mapper carriage, which supports four planes of Hall probes, so the 
number of Z planes scanned is four times Nz and it covers a further ±0.25 metres in Z. 

 
 
 

 
Figure 4.1. A small selection of the data from Map7730a after all the corrections that will be 

described below. We have selected three radial positions and one φ position (20π/16) to illustrate 
the shape of the field and the density at which it was mapped. 
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5. Hall probe calibration 
The primary Hall card calibration involved placing each card in a highly uniform field 
whose strength was monitored by an NMR probe. The card was turned to many 
different orientations with angles θ and φ that were measured very precisely by pickup 
coils. The measurements were repeated at several field strengths and temperatures. 
The Hall voltage (V) is decomposed into orthogonal functions. Spherical harmonics 
are used for θ and φ and Chebyshev polynomials for |B| and temperature. 
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Using this series about 200 parameters are necessary to calibrate each probe to 0.01% 
accuracy [6]. A separate angular calibration was used to find the orientation of the 
calibrated coordinate system relative to the three feet that support the Hall card on the 
mapping machine.  
 
All Hall cards were calibrated up to 1.4 T in a magnet at CERN and up to 2.5 T in the 
M5 magnet at Grenoble. We would like to thank the Grenoble High Magnetic Field 
Laboratory for the generous offer of their facilities, which made the high field 
calibration of our probes possible. Compared with the CERN magnet, the Grenoble 
magnet had less temperature stability and a smaller region of uniform field, not large 
enough to operate the calibration jig simultaneously with an NMR probe. 
Consequently the expected accuracy is ± 2 G for the low field calibration and ±10 G 
for the high field calibration. The alignment accuracy is expected to be ±2 mrad for 
both calibrations. We knew in advance that 2 mrad alignment accuracy is not 
sufficient for our needs. However we also found in advance that it is possible to 
determine individual probe misalignments within 0.1 mrad from the map data itself, 
as described in Section 12. 
 
Finally, we are able to make a comparison between the field measured by the Hall 
probes and the same field measured by the four NMR probes. We know that NMR is 
highly accurate so we can derive from this a correction that applies to the Hall probes 
as a whole. The difficulty with this comparison is that the NMR probes are just 
outside the volume scanned by the Hall probes, so some extrapolation must be done. 
Two methods have been used and the difference between them gives a measure of the 
uncertainty. The first method is to use the field model which is fitted to the entire Hall 
probe data set to predict the field at the NMR positions. The second method is to plot 
the difference between the Hall probe data and this fit, on a line pointing towards the 
NMR probes, and extrapolate linearly outwards to the radius of the NMR. The first 
method makes best statistical use of the Hall data while the second takes into account 
the small discrepancy between the measurements and the fit. Whatever method is 
used, the correction is only measurable at the four mapped field strengths.  
We can also look at the difference between the 5000 A map data when it is passed 
through either the high or low field calibration. All these differences are plotted in 
Figure 5.1. 
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Figure 5.1. Differences of field measured by the NMR system and high and low calibrations of the 
Hall probes. The error bars indicate the r.m.s. spread of the data behind each plotted point; for 
points comparing the fit to the NMR it is the r.m.s. of four numbers and for points comparing 

two calibrations of the Hall probes it is the r.m.s. of 48 numbers. 
 
This data is consistent with the hypothesis that the low field Hall calibration is very 
accurate, as expected, while the high field Hall calibration has a systematic bias that 
varies linearly with the field strength. So we make a correction to all Hall data that is 
processed through the high field calibration using the linear fit coefficients HC1, 
shown in blue in the figure. The possible systematic error in our final maps resulting 
from this correction is evaluated by using the alternative values labelled HC2. No 
such corrections are applied when the Hall data is processed through the low field 
calibration. 
 
6. Mapping machine geometry 
We work in a coordinate system that is identical to the Inner Warm Vessel (IWV) 
coordinate system used by the ATLAS survey team, except that we re-label the axes 
so that they approximately coincide with the more familiar ATLAS physics 
coordinate system: 
 
 x = yIWV ≈ xphys  , y = zIWV ≈ yphys  , z = xIWV ≈ zphys 

 
The dimensions in this section are extracted from the results of five surveys:  

• The inner detector rail survey [1].  
• A detailed survey of the mapping machine in building 164 [2].  
• The first underground survey [3] with the machine at Z=0 before the mapping 

campaign. This survey is thought to be less accurate and used only as a cross-
check for … 
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• The second underground survey [4], with the machine at Z=2.5 m after the 
mapping campaign.  

• A survey of the positions of individual sensors within the Hall cards.  
Each survey individually had an accuracy of around 0.1 mm. When all this 
information is combined to calculate the position of a map point in the IWV 
coordinate system we estimate that the resulting accuracy is around 0.3 mm r.m.s. 
 
 

 
Figure 6.1. Showing the numbering of the probes and the parameters of the idealised machine.  
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We number the Hall probes from 1 to 48. The surveyors used a labelling system based 
on A or C for the end of the machine, E or I for external or internal, and numbers 1-
12. So the relation between the systems is given in Table 6.1 . 
 

Survey label range Our label range 
start end start  end 
AE1 AE12 1 12
AI1 AI12 13 24
CI1 CI12 25 36
CE1 CE12 37 48

Table 6.1 Relation between surveys and probe numbering. A and C refer to the two ends of Atlas. 
E and I refer to the external and internal faces of the arms. 

 
The machine geometry is defined by first giving the parameters of the ideal geometry 
as drawn in Figure 6.1, then by describing the small deviations from this geometry. 
The parameters of the ideal machine are:  
 

• Zenc0, the Z position in Atlas coordinates of the mapper carriage centre when 
its Z encoder reads zero. Surveyed values were -1.78 mm [3] and -1.75 mm 
[4].  We use -1.77 mm.  

• Fenc0, the phi position in Atlas coordinates of the mapper axle when the phi 
encoder reads zero. Not surveyed but set up accurately at zero. We use 0 deg. 

• ZarmA, the distance in Z from the carriage centre to the mid-line of the arm at 
the A end. We use 0.2224 m based on survey [2]. 

• dZarmA, the distance in Z from the mid-line of the arm A to the Hall  
sensors. Utilised 0.0278 m based on survey [2]. 

• FarmAE, FarmAI, FarmCI, FarmCE the difference in phi from the mapper 
axle to the arms. Utilised 0,180,270,90 degrees. The survey [2] measured the 
arms to be perpendicular to within 0.04 degrees so we treat them as perfectly 
perpendicular. 

• ZarmC, dZarmC. Similar to arm A, from survey [2], utilised 0.2224 m and 
0.0275 m. 

• Rhall(12), the radial positions of the Hall probes on the arm. We use the 
nominal values 118, 228, 338, 438, 538, 638, 718, 798, 878, 938, 998, 1058 
mm. Nearly all (42 out of 48) of these positions were measured in survey [2]. 
The measured values differ from nominal by; max 0.3 mm, min -0.2 mm, 
r.m.s. 0.14 mm.  

• Fnmr, the phi-angles of the four NMR probes. We use 135.17, 224.88, 
314.99, 44.75 degrees respectively. 

• Rnmr, radii of the NMR probes. Utilised 1.13020, 1.13045, 1.12967, 1.13240 
m. 

• Znmr, z-positions of the NMR. Utilised -0.0042, -0.0047, -0.0026, -0.0043 m. 
All the NMR positions are based on surveys [3] and [4]. 
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6a. Arm tilts 
The final machine survey found that the two arms were tilted at different angles 
relative to the IWV axis. The survey data for arms AE and CI have been analysed to 
provide tilt information, and arms AI and CE are assumed to have the same tilts as AE 
and CI respectively. The plane in which an arm moves is defined by the normal unit 
vector ,where for arm A, a = -0.000438, b = -0.001267 and for arm C,     
a = -0.000422,   b = +0.000482 . The opposite-signed b values correspond to both 
arms drooping slightly below the horizontal. 

zcybxa ˆˆˆ ++

 
6b. Rotation centre offsets 
The centre of rotation of the arms is also offset from the IWV axis. This leads to a 
correction of the positions but not the field components in Cartesian coordinates. 
However, once transformed back to cylindrical coordinates, field components also 
change because the r and phi directions have changed. The centre of rotation is shifted 
∆x = -0.0001, ∆y = +0.00105 for arm A, and ∆x = +0.0001, ∆y = +0.00125 for arm C 
(all values in metres). These shifts were measured in survey [4] when the mapping 
machine was at z = +2.5 m. 
 
6c. Rail tilt 
A survey of the rails [1] found that they had a tilt of +0.0775 mm/m. The correction 
for the rotation centre of the arms becomes 
 

∆y = rail tilt ×( z – 2.5 ) +  ∆y(at z=2.5) 
 
6d. Machine skew 
Additionally, the machine chariot can be skewed because the wheels on the rails do 
not travel exactly the same amount in z. There are separate encoders on the two rails 
so we can see the skew and correct for it by correcting the positions and field 
components of the Hall probes. Typical skew values were < 0.1 mrad with extremes 
of up to 0.3 mrad. The chariot was assumed to be a rigid body which rotated about its 
centre. The centre was defined to lie on the z-axis (i.e., x=0, y=0) with zmap = average 
of the two rail positions z0 and z1. ( Rrail = 1.110 m ) 
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The corrections in this and the preceding sections are applied to the data before it is 
stored in the “CorrC” format [7]. 
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6e. Offsets of Hall sensors from a common point 
This correction is not applied to the CorrC data because it deals with the fact that the 
three field components are not really measured at a common point, as is assumed by 
CorrC. The location of the field measurement given in CorrC refers to a point roughly 
at the center-of-mass of the three Hall sensors that measure the individual field 
components. 
 

 
Figure 6.2. Hall Card Detail. This shows the arrangement of Hall sensors glued onto three 

perpendicular faces of a small glass cube. The annular object is one of the three feet that locate 
the card on the mapping machine. 

 

 
Figure 6.3. Hall sensor positions (mm). In X,Y they are relative to the target adapter hole (large 
circle). In Z they are relative to the plane of the Hall card feet.  Note that the offsets of the Hall 

sensors from the centre of their SMD packages are included in the reported positions. 
 

These Hall sensor positions have been measured on a sample of 9 cards, randomly 
chosen from the 48 cards used for mapping. In fact what one can measure on the card 
is the position of the package that holds the Hall sensor, so in addition we use 
information from the manufacturer on the position of the sensor within the package.  
We also measured the target adapter that was used for the surveys of the mapping 
machine; this is what defines the nominal position of the triplet of sensors. Combining 
all the above information, as indicated in Figure 6.3, leads to calculated offsets of real 
sensor positions from the nominal position. The relevant offsets are shown below, 
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while the others have negligible effect because our field is almost independent of phi. 
The r.m.s. spread of the offsets in the nine cards sampled was typically 0.2 mm, so the 
means are probably accurate to about 0.1 mm. 
 
 Offset of Br sensor in the … Offset of Bz sensor in the … 
 Z direction R direction Z direction R direction 
Arms AE & CI -0.67 -1.32 -0.90 +1.59 
Arms AI & CE +0.67 -1.32 +0.90 +1.59 
Table 6.2. Offsets in mm, to be applied to the nominal position of the sensor triplet in order to get 

the real position of individual sensors in Atlas coordinates. 
 
7. NMR Data  
The Inner Detector is equipped with four NMR probes which are fixed to the wall of 
the inner warm vessel near R=1.13 m and Z=0 (exact positions in Section 6). The 
NMR probes were operational throughout the commissioning of the solenoid and the 
mapping of the field, and remain in place to monitor the field strength during the 
lifetime of Atlas. These probes measure the field strength with accuracy of around 0.1 
G. Figure 7.1 shows a typical sample of the raw NMR data at full field. 
 

 
Figure 7.1 Sample of raw NMR data. 

 
It can be seen that the field is very stable but there are some glitches, due either to 
noise affecting all probes (around reading 85) or occasions when the multiplexer 
failed to switch and a reading was attributed to one probe when in fact it was from 
another (around reading 5). These glitches are removed by hand and the remaining 
data averaged within each map period to give the results in Table 7.1. 
 

 Probe A Probe B Probe C Probe D 
Map7730a 2.028837 2.029652 2.028481 2.029078 
Map5000 1.312676 1.313181 1.312396 1.312812 
Map7850 2.060301 2.061129 2.059939 2.060547 
Map7000 1.837422 1.838149 1.837099 1.837639 
Map7730b 2.028840 2.029656 2.028485 2.029083 

Table 7.1. Averaged NMR values (Tesla) from each probe for each map. 
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An early concern was that there could be some hysteresis in the iron contribution to 
the field that would make it difficult to reach a predictable operating condition. This 
proved not to be true, as Figure 7.2 demonstrates. During commissioning and 
mapping the solenoid current was taken nine times to 7730 A and on eight of those 
occasions the current was approached from below. The average of the four NMR 
probe readings was recorded each time and is plotted in the figure showing that the 
hysteresis effect, if any, is no more than 0.2 Gauss. Once, between cycles 3 and 4, the 
7730 A point was approached from above and that time the average NMR reading 
was 20293.27 Gauss, showing that the direction of approach does matter. For Atlas 
physics running the operating current will be approached from below.  
 

 
Figure 7.2. NMR data demonstrating negligible hysteresis. 

 
We can derive from the data in Table 7.1 information about the saturation of the 
calorimeter iron magnetisation. Saturation will produce a non linearity in the relation 
between current and field. We can see this by subtracting the very dominant linear 
part and plotting the remainder, as shown in Figure 7.3. The distortion of the solenoid 
by magnetic forces also causes a non linearity which goes in the opposite direction, so 
we can not read off the iron saturation effect directly from this plot. 

 
Figure 7.3. Small deviation from linearity between current and field. 

 
8. Special scans 
The data set Pzero7730a was used to measure the repeatability of the Hall probes. 
Figure 8.1 shows the difference between pairs of measurements made by the same 
Hall probe at the same position in space, separated in time by the few minutes 
required to make a 360 degree rotation of the axle. The measurements are near the 
z=0 plane and only the Bz component of the field is used, so any tilts or imperfections 
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of the machine movements have negligible effect. The r.m.s. is only 0.30 G, showing 
that the random part of the Hall probe error is a negligible 0.21 G. 

 
Figure 8.1. Repeatability of Hall probe measurements. 

 
The fine Z scan around Z=0, FineZ5000, was used to check that the weld between 
solenoid sections was at the expected position. We found that over this limited Z 
range the |B| measured by the outermost Hall probes fits well to a quadratic minus a 
Gaussian function. Looking at Figure 8.2 it is plausible to assume the quadratic fits 
the shape that the field would have with no weld and the Gaussian fits the small dip 
caused by the weld.  

 
Figure 8.2. The quadratic minus Gaussian function fits the field magnitude. 

 

 
8.3. Weld fits at 16 φ positions. 
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This fit was repeated at the 16 φ positions of the scan, as shown in Figure 8.3. Thus 
we have 16 independent estimates of the weld position and they have a total range 
between 6.5 and -8.5 mm, with mean -1 mm and r.m.s. 3 mm. This allows us to be 
confident that the centre weld is really within 5 mm of Z=0, which is good enough for 
our needs. 
 
The fine φ scans FineF7730a and FineF5000 were used to discover and measure the 
perturbation of the field caused by the mapping machine itself, as described in Section 
13. 
 
9. The purposes of fitting 
We only fit the map data to models of the field that obey Maxwell’s equation in the 
absence of current and magnetic materials; div B = curl B = 0. So if we find that our 
field model does not fit the data it either means that our model is not detailed enough 
to represent the true field, or that there is a systematic error in the map data that makes 
it non-Maxwellian.  Several months have been spent on tracing residuals back to one 
or other of these causes and thus correcting the data or improving the model. Another 
possible reason for fitting would be to smooth out any random errors in the data; 
however the level of truly random errors is around 0.2 Gauss so the benefit of 
smoothing this away is very small. Even if we had absolute confidence in the map 
data we would still need to make use of a field model because the map data points are 
not dense enough to allow us to calculate the field any all points in the ID volume by 
interpolation with the accuracy we need.  
 
10. The Geometrical  Fit 
We use a detailed model of the conductor geometry and integrate the Biot-Savart law 
using the measured conductor current to produce a field model that we expect to 
account for most of the measured field. Within our conductor geometry model there 
are several parameters taken from surveys of the solenoid coil as built [13]. For 
example the coil was built from four sections, each with slightly different average 
pitch, and joined together by welds that can be represented electrically by turns 
having just under twice the average pitch. There are also welds at the ends of the coil 
and a return conductor that runs axially along the outside of the support cylinder. We 
include the expected distortion of the solenoid from its surveyed dimensions due to 
shrinkage on cooling. We also include the distortion due to magnetic forces [10]. We 
assume that the coil has a perfectly circular cross section. 
 
We allow two free parameters to our conductor model; an overall scale factor of all 
dimensions in the axial direction and an independent scale factor in the radial 
direction. Technically this is achieved in the software by mixing two field models 
with slightly different aspect ratios (coil length/diameter) that bracket the true aspect 
ratio, then by scaling the resulting mixture equally in both the radial and axial 
directions. Both mixing and scaling are simple transformations that can be done in a 
second of CPU time, whereas creating a field model with a new aspect ratio requires 
the Biot-Savart integral to be evaluated at every point in the map which takes about 2 
hours. 
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We have a further five free parameters representing three offsets and two rotations of 
the conductor model relative to the map coordinate system. Finally we include four z-
symmetric terms of a Fourier-Bessel series, which are intended to represent the field 
due to the magnetised iron. The length scale of the lowest term was chosen to be 2.5 
m because this value allows a good fit to the iron field predicted by ATLM with only 
4 terms. So the fit has a total of 11 free parameters, which are found by using 
MINUIT to minimise a χ² function that includes the Bz and Br components of the field 
at all mapped points. 
 

 
Figure 10.1. The main dimensions of the conductor geometry model of the solenoid, when cold 

but not carrying current. 
 
 
 
11. The general Maxwell fit 
Any magnetic field which obeys divB = curlB = 0 can be represented by a sum of the 
functions described below. Furthermore, the field anywhere inside a volume is fully 
determined by the field values on the surface that encloses the volume. The general 
Maxwell fit [8] uses these features to find a function that closely matches the 
measured data on the surface of the mapped volume and this function then predicts 
the field at any point within the ID. All three functions described below are infinite 
series. In principle an infinite number of terms would be needed to describe an 
arbitrary field but in practice each series has to be truncated somewhere. The number 
of coefficients we can evaluate is eventually limited by the number of data points on 
the cylinder surface, but in fact we work with a much smaller number of terms. We 
have chosen an expansion that matches the nearly-cylindrical character of our field 
and so it converges quite rapidly. 
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In our situation the majority of the Bz field is represented by a sum of Fourier-Bessel 
terms of the form 
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where L is the half-length of the cylinder and the In are modified Bessel functions.  
The coefficients A, B and phases α, β of these terms are evaluated solely from the Bz 
measurements on the curved surface of the mapped cylinder.  After subtraction of the 
Fourier-Bessel terms from the measured data one is left with non-zero Bz values on 
the cylinder ends. These can be represented by hyperbolic terms of the form 
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where ζnm  are the zeros of the Bessel functions Jn. These terms are chosen so that they 
have a zero at the mapper radius R in order to avoid changing Bz on the curved 
surface.  The corresponding Br and Bφ components of the field are given by rather 
similar terms with the same coefficients. 
 
After subtraction of both FB and hyperbolic terms from the data one is only left with 
components of the field which are independent of z and make no contribution to Bz. 
Br is represented by multipole terms of the form  
 

)cos(1
n

n
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where the coefficients are evaluated from the Br residuals on the curved surface of the 
cylinder. 
 
We make use of the general Maxwell fit in calculating the probe normalisation 
corrections below. We also apply it to the residuals of the geometrical fit, where it 
allows us to improve our representation of the data without straying outside the laws 
of physics. We have also tried it on whole field maps but we do not report the results 
here because it has no advantage over the geometrical fit and the many parameters do 
not have simple physical interpretations, such as coil dimensions and displacements 
that can be cross-checked against other information.  
 
12. Probe normalisation and alignment corrections 
The strong constraints on the possible field from Maxwell’s equations, combined with 
the fact that the field at the origin can be almost completely determined from the Bz 
measurements of a single Hall probe, allows us to determine all three probe alignment 
angles and to normalise the Bz component to a common scale for all probes. This 
calibration method is described in detail in [8]. It is applied separately to the low 
(5000 A) and high (all other currents) field maps because the underlying Hall 
calibrations are different in these two cases. 
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Figure 12.1 shows the Bz normalisation correction that we use for the high field maps. 
There is no significant structure versus probe number. The mean is zero by 
construction and the r.m.s. is 3.4 ×10-4, slightly better than the ±10 G expectation. In 
the case of the low field map, the r.m.s. is 0.8 ×10-4, also slightly better than the ± 2 G 
expectation. 
 
Figure 12.2 shows the probe alignment corrections that we use for the high field 
maps. The R-Z angle is by far the most important because it mixes the two large 
components of the field that are used in the fit χ². The mean angle is slightly negative 
and there is an r.m.s. of 3.1 mrad, somewhat worse than the ± 2 mrad expected from 
the Hall probe angular calibration procedure. There is no significant structure except 
that probe number 6 stands out; on dismantling the mapping machine this probe was 
found to be poorly attached to the arm.  
The R-φ angle is poorly determined on the lowest radius probes (numbers 1,13,25,37) 
because both Br and Bφ are always very small for these probes, conversely this angle 
has little influence on the final map. The remainder of the R-φ and Z-φ angles show a 
scatter of around 3 mrad, with possibly some systematic effects, but again they have 
little influence on the fit. 

 
Figure 12.1 Probe normalisation corrections for the high field maps. 

 

 
Figure 12.2. Probe alignment corrections for the high field maps. 
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13. Mapper dipole corrections 
Early investigations of the data showed variations of the field versus φ that were 
unlike anything predicted by our field models. We will discuss here only the Bz 
component because it is not influenced by probe misalignments of a few mrad, but 
these variations also exist in the Br and Bφ components where they are mixed with 
probe alignment effects. Figure 13.1 shows a typical example of Bz measured by arm 
CI in a fine φ scan of 64 steps. We plot Bz measured minus Bz of our model but in fact 
the φ dependence of Bz in the model is well below 1 Gauss so all the variation seen in 
this plot is coming from the measurements.  
 

 
Figure 13.1. Bz residuals in a fine phi scan at Z = -0.195 m. 

 
We now understand the features in Figure 13.1 as being due to two independent 
effects. First is a low-spatial-frequency effect in φ that is seen in probes at all radii 
and has amplitude that is approximately proportional to radius. This effect changes, 
also with low spatial frequency, as a function of Z. We suspect that it is due to very 
small variations in the density of the windings in different regions of the solenoid coil. 
 
The second effect is spikes or bumps that are only seen by one or two neighbouring 
probes in a narrow φ range. For most probes they appear near 0 and 180 deg but for 
the innermost two probes the bump is broader and is centred at 90 deg. These features 
are independent of Z. Another clue is that they are most pronounced on the inner sides 
of the arms and especially on arm CI. All this is consistent with the features being 
perturbations of the field cause by small magnetisable components on the mapping 
machine itself. We have tracked down a list of components on the machine which are 
probably the culprits. The positions of these components are known but their 
magnetisability has to be got from the map data itself. We represent each of the 
magnetic components by a dipole field located at the known position on the machine 
and with a strength that is adjusted by hand to make the residuals plot look as smooth 
as possible after subtraction of the dipoles. The dipole direction is aligned with the 
local direction of the field, so it changes as the machine moves along the rails. The 
dipole strength is constant, independent of the local field strength, because we found 
that this gives the lowest residuals, which indicates that the magnetic components are 
fully saturated. 
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Figure 13.2. Bz residuals in a fine phi scan at Z = -0.195 m after the mapper dipoles correction. 
  
The final result for arm CI is shown in Figure 13.2. There is a significant 
improvement but clearly our model of the perturbation due to the machine is not quite 
perfect as some small spikes remain. The reason for making this effort to correct for 
localised perturbations of only a few Gauss is that the methods used in [8] rely on 
having a field that accurately obeys Maxwell. The intrinsic accuracy of the Hall 
probes is so good that these machine perturbations would be the dominant error in 
Sections 12 and 14 if they were not corrected.  
 

Component Z (m) R (m) Phi (deg) Strength (A m²) 
Phi encoder -0.02 0.190 90 9.0 
Phi motor bearings -0.13 0.378 164 2.3 
Z motor bearings -0.13 0.772 171 2.3 
Plug on ESB -0.04 0.457 9 16.8 
Z encoder -0.04 1.080 188 5.6 
Z encoder 0.00 1.080 352 5.6 
Electrical valve -0.08 0.865 18 3.2 
Electrical valve -0.08 0.830 162 3.2 
Z motor bearings -0.13 0.830 8 2.3 

Table 13.1. Magnetic components on the mapping machine, with the position and strength of 
dipoles used to represent them. 

 
14. Carriage Tilts 
The x component of the field on the axis of the mapping machine can be evaluated by 
using one of the probes at low radius and taking the average of Bx over the 16 equally 
spaced φ steps. All of the low radius probes on one arm give consistent results for Bx 
and By measured in this way. At higher radius results diverge because 16 steps are not 
enough to accurately average to zero the transverse field due to the return conductor. 
The measurement can also be done using either the Br or the Bφ component of the 
field and these also give consistent results within 1 G.  
If Bx or By are plotted against z we see that the different arms do not agree on a 
unique value of the field at each z position; Figure 14.1. But if they are plotted against 
the z position of the mapping machine carriage, zcar, then we see in Figure 14.2 a 
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much more coherent picture. These features are explained if the carriage tilts slightly 
as it moves along the rails, this imparting a common error to all measurements as a 
function of zcar. The offset between the transverse fields measured by arms A and C 
can be explained by small errors in the surveyed values of the arm tilts. So we apply a 
correction to the tilts of arms A and C to bring them into agreement with each other 
without changing their average value. This is done by changing the a and b 
parameters of Section 6a. For arm A we use ∆a=0.00004, ∆b=0.00011 and for arm C 
we use ∆a=-0.00004, ∆b=-0.00011 . 
 

 
Figure 14.1 The transverse field on the mapper axis plotted against the z position of the probe 
 

 
Figure 14.2 The transverse field on the mapper axis plotted against the z position of the carriage 
 
 
We have developed an integral method to calculate the carriage tilts from the data, 
which is described in detail in [8]. The integral needs a starting point of some zcar 
value at which the carriage tilt is known. One option is to trust the survey data, which 
amounts to setting the tilt to be zero at zcar = 2.5 because this is where the carriage was 
surveyed and the data have already been corrected for the surveyed axle tilt; this gives 
a correction set which we call CT1. However we do not expect the survey [4] to be 
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highly accurate because the axle directions measured in an earlier survey [3] differ 
from it by up to 1 mrad. Rather than accept a systematic error of 1 mrad we have used 
the map data itself to choose offsets of the carriage tilt in the horizontal and vertical 
directions which minimise differences between the four arms. The required offsets 
change the surveyed axle directions by ∆a=0.00024, ∆b=-0.00011, thus giving an 
alternative correction set which we call CT2.  
 
Figure 14.3 shows a compilation of the tilt values CT1 from all maps. We see that the 
rotations around the horizontal axis, ∆b, are quite jagged, possibly due to the machine 
going over steps and bumps of order 0.1 mm in the rail height. Any rotations around 
the vertical axis caused by the rails should have been picked up and already corrected 
by the separate encoders on the two rails, so we assume that the non-zero values of ∆a 
are due to imperfections of the encoders themselves.  
 

 
Figure 14.3. A compilation of carriage tilt corrections CT1 from all maps. 

 
 
15. Fit quality measures 
The quantity minimised in our fit is     
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where the index i runs over all the measured points and the component index c can be 
one or more of z, r and φ. For our final results we use the z and r components but for 
systematic studies we also use z alone or all three. Another systematic test, designed 
to be insensitive to probe alignment is to minimise   
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In both of these expressions the 5 Gauss only serves to normalise the function to a 
reasonable value for MINUIT to work with, it does not imply that there is really a 
random error of 5 G in each measurement and we do not take seriously the parameter 
uncertainties corresponding to a unit change of χ². 
 
The standard measures of fit quality that we use are the mean, r.m.s. and extreme 
values of the residuals . We report these for each of the three field 
components separately in the results tables. However these do not capture our 
essential aim which is to know the sagitta and hence the momentum of a track. So we 
make the following simplifying assumptions about the tracks of interest: 

fit
i

meas
i BB −

• A track follows an almost straight trajectory from the origin to the point where 
it leaves the ID volume either at R=1.08 m or Z=±2.713 m. The radius at 
which it leaves the ID is called Rmax.  

• The track is measured by the ID at several uniformly spaced points along its 
path with equal accuracy.  

• Only measurements in the φ direction contribute to the momentum 
measurement because the detector resolution in the other direction is relatively 
poor. 

Given these assumptions the sagitta of a track is proportional to S where 
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Where cz and cr are the direction cosines of the track in z and r. The integral is 
evaluated numerically along straight lines at fixed values of θ and φ. The effect on the 
sagitta of a difference between the fitted and the measured field is  
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Where we do the field subtraction before the integral to avoid rounding error due to 
large cancellations. We use δS/S as our measure of the fit quality for one particular 
trajectory and we use a set of trajectories, uniformly spaced in φ and η ( = - ln ( tan 
θ/2 ) ) to measure the quality of the whole fit. 
 
16. Results from the geometrical fit 
The geometrical fit was applied to all of the available maps. Map 5000 was analysed 
with both the standard and the high field Hall calibrations. We give summaries of 
each fit and extra detail about the map 7730a because this is the one that we plan to 
use for our final results at nominal 2T field. 
 
Map Bz (G) Br (G) Bφ (G) δS/S (×10-4) 
 r.m.s. extreme r.m.s. extreme r.m.s. extreme r.m.s. extreme
5000 2.96 -35.1 2.91 -36.8 2.22 -12.7 3.56 -13.7 
5000h 4.14 -42.5 3.88 -38.9 2.97 -15.2 4.16 +14.8 
7000 5.76 -45.9 5.18 -43.7 3.72 -19.7 4.41 -17.3 
7730a 5.31 -54.2 5.06 -44.1 3.68 +21.7 3.76 -14.1 
7730b 4.52 +51.9 4.80 -39.4 3.84 -25.0 2.99 +9.0 
7850 4.53 +51.0 4.56 -43.7 3.77 -22.2 2.91 +10.4 

Table 16.1. Quality indicators of the geometrical fit residuals. 
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Map Offsets (mm) Angl (mrad) Scale factors Field at centre 
 x y z Αx Ay Z R (Gauss) % iron 
5000 0.44 -2.52 0.36 -0.11 0.20 1.00159 0.99900 12926.2 4.108 
5000h 0.42 -2.54 0.35 -0.11 0.18 1.00154 0.99913 12925.2 4.099 
7000 0.33 -2.41 0.48 -0.06 0.16 1.00137 0.99919 18092.6 4.074 
7730a 0.26 -2.42 0.51 -0.08 0.19 1.00121 0.99926 19977.5 4.052 
7730b 0.17 -2.63 0.55 -0.13 0.23 1.00122 0.99927 19977.7 4.054 
7850 0.35 -2.50 0.60 -0.12 0.23 1.00126 0.99954 20287.3 4.060 

Table 16.2. Parameter values of the geometrical fit. 
 
The expected offsets of the solenoid centre were -0.1 ± 2.3 mm axial, -0.3 ± 0.4 mm 
horizontal, -2.2 ± 0.4 mm vertical [14]. Our fitted offsets are consistent with these 
expectations in the axial and vertical directions. The fitted horizontal offset is in the 
opposite direction to that expected but the discrepancy is only 1.5 σ. At first sight the 
fitted scale Z and R scale factors appear very close to 1, however the Z scale of 
1.0012 amounts to a change of 6 mm in the total length of the coil, which is difficult 
to reconcile with the coil survey accuracy. The radial scale factor that comes from our 
fit is compatible with survey information. 
 
The conductor model used in all these fits had the expected dimensions of the coil at 
7730 A, so the slight changes of the Z and R scale factors with current could be due to 
the real distortion of the coil by magnetic forces. Also, since the coil is fixed at end A 
and free at end C, one expects the slight movement of the coil centre in the +z 
direction as it gets shorter.  
 
We believe that the ripples seen in these residual plots at |Z|< 2m are due to variations 
in the coil winding density. The winding density was measured at intervals of 50 turns 
and 45º, with accuracy 0.5 mm [13]. This data was used to set the average pitch of 
each 288-turn section of the coil in our conductor model. The data also shows that 
there are smaller scale variations in the winding density but it is not accurate enough 
for us to put them into our conductor model with any confidence. So it is not 
surprising that we see these residual ripples at the 5 G level. 
 
The bigger features in the residuals plots at |Z|>2m could also be due to winding 
density variations but we believe it is more likely that they are a result of the coil not 
having a perfectly circular cross section. Four points on each end of the coil were 
surveyed [12]. The deviation of the measured points from fitted circles were up to 2.7 
mm, indicating that it is not circular but not giving us enough information to know its 
real shape. The field near the ends of a long solenoid depends on its cross sectional 
shape and area, whereas the field becomes independent of the section as you move 
towards the middle. This suggests that any residuals due to having the wrong coil 
cross section in our conductor model will be largest near the coil ends. 
 
The 0 A map shows a field of 4.2 G at the centre and fits well to a single Fourier-
Bessel term with length scale 2.52 metres. The fit residuals are around 1.2 Gauss in all 
three field components. 
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Figure 16.1. Bz residuals from the geometrical fit to map7730a. 
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Figure 16.2. Br residuals  from the geometrical fit to map7730a. 
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Figure 16.3. Bφ residuals from the geometrical fit to map7730a. 
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17. Application of the Maxwell fit to the Geometrical residuals 
If either of the explanations above is correct then the residuals that we see after the 
geometrical fit are due to real magnetic fields rather than measurement errors. In this 
case they will obey Maxwell and we can fit them with the general function that is 
described in Section 11. We chose the truncation point of each series by looking at the 
behaviour of the fit residuals as the number of terms is increased from a low level. We 
find that the residuals improve rapidly at first then more slowly, so we truncate the 
series when the rate of improvement of the residuals becomes low. The resulting 
series has up to 25 Fourier-Bessel terms and up to six additional hyperbolic terms in 
(r,z) describing the azimuthally symmetric component of the field. Further Fourier-
Bessel and hyperbolic terms, modulated by cos(φ), sin(φ), cos(2φ) and sin(2φ) are 
needed to describe the small azimuthal dependence. Thus the total number of 
parameters determined from the data is; for the Fourier-Bessel series 245 coefficients 
and 196 phases; for the hyperbolic series 60 coefficients and 48 phases; for the 
multipole series 4 coefficients and 4 phases. 
 
18. Results of final fit 
The effect of the Maxwell fit is to significantly reduce the residuals of all probes. We 
remind the reader that this function is evaluated using only measurements on the 
surface of the cylinder and is dominated by the curved part of the surface which is 
measured by just the four outermost Hall probes. So the fact that the function matches 
the inner probes too it is very strong evidence that the difference between the data and 
the geometrical model is a real field, not a measurement error.  
The inclusion of the Maxwell fit has a beneficial effect on the fit quality as measured 
by δS/S at high η. This is because the geometrical fit had ~5 G residuals in Br at 
around z = 1m and low radius. In this region for high η tracks Br is just as important 
for bending the track as Bz. The track has a long path length before exiting the ID and 
the denominator S is falling rapidly with η, which conspires to make a Br residual of 
only 5 G important. 
 
Map Bz (G) Br (G) Bφ (G) δS/S (×10-4) 
 r.m.s. extreme r.m.s. extreme r.m.s. extreme r.m.s. extreme
5000 2.27 -25.1 1.84 -29.8 1.89 +11.3 1.75 +6.8 
5000h 3.69 -28.5 3.30 -29.4 2.72 +12.5 2.05 +8.0 
7000 5.01 -33.4 4.36 -34.7 3.19 +15.9 1.62 +7.7 
7730a 4.35 -37.1 3.52 -33.6 2.96 +14.9 1.40 +7.3 
7730b 3.32 -32.4 3.43 -54.1 3.26 +14.9 1.36 +6.8 
7850 3.55 -32.6 3.47 -48.6 3.12 +16.0 1.66 +10.1 

Table 18.1. Quality indicators of the final fit residuals. 
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Figure 18.1. Bz residuals from the final fit to map7730a. 
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Figure 18.2. Br residuals from the final fit to map7730a. 
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Figure 18.3. Bφ residuals from the final fit to map7730a. 
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19. Error estimates 
We divide the error into two parts; one uncertainty about the shape of the field and 
another uncertainty about the scale of the field. We estimate the shape uncertainty of 
our final fit by making ‘reasonable’ changes to our analysis and seeing what effect 
they have on the results. One type of change that we consider reasonable is to change 
the way that we evaluate a correction, or to completely ignore a small correction. 
Another reasonable change is to use a different choice of field components in the χ² 
that is minimised in the fit. If the field was perfectly understood this would make no 
difference. A final possibility is to fit to the 5000 A data and scale up the result in 
some way. However the scaling is not trivial and will introduce errors of its own, 
while many other systematics will be in common. Keys for the error estimates: 
 
None – no change, the standard Geometrical + Maxwell fit to the data set 7730a. 
HC2 – use the alternative high field correction described in Section 5. 
noHC – remove the high field correction completely. This is too big a change to use 
for error estimation but we include it for reference. 
CT2 – use the alternative carriage tilt correction described in Section 14. 
noCT – remove the carriage tilt correction completely. This is too big a change to use 
for error estimation but we include it for reference. 
noMD – remove the mapper dipoles correction. 
Zonly – fit to the Bz component of the field only 
ZRF – fit to all three field components 
Bmod – fit to the modulus of the field only 
5000s – compare with the standard fit to data set 5000, scaled up by the ratio of the 
NMR values. 
 
We quantify the effect of these changes by showing the quality indicators for the fit 
residuals in Table 19.1 and the fitted parameter values in Table 19.2. However the 
most important results are in Table 19.3 where we show the quality indicators for the 
difference between the modified fit and our standard fit. In this comparison the mean 
can be non-zero so we show the mean and the r.m.s. deviation from zero. 
 
Map Bz (G) Br (G) Bφ (G) δS/S (×10-4) 
 r.m.s. extreme r.m.s. extreme r.m.s. extreme r.m.s. extreme
None 4.35 -37.1 3.52 -33.8 2.96 +14.9 1.40 +7.3 
HC2 4.35 -37.1 3.86 -32.0 2.96 +14.9 1.60 +7.9 
noHC 4.38 -37.1 5.64 -33.9 2.96 +14.9 2.45 +9.7 
CT2 4.34 -37.1 3.52 -33.7 2.90 +15.2 1.29 +6.5 
noCT 4.43 -38.0 5.52 -35.0 5.30 +19.5 2.43 +8.1 
noMD 4.36 -37.2 3.57 -33.5 3.06 +15.4 1.50 +7.1 
Zonly 4.35 -37.1 3.52 -33.7 2.96 +14.9 1.41 +7.4 
ZRF 4.35 -37.1 3.52 -33.9 2.96 +14.9 1.40 +7.3 
Bmod 4.35 -37.1 3.52 -33.7 2.97 +14.9 1.41 +7.4 
5000s 3.51 -38.8 2.84 -46.1 2.92 +17.5 1.75 +6.8 

Table 19.1. Quality indicators of the residuals of reasonable alternative fits. 
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Map Offsets (mm) Angl (mrad) Scale factors Field at centre 
 x y z Αx Ay Z R (Gauss) % iron 
None 0.26 -2.42 0.51 -0.09 0.19 1.00121 0.99926 19977.9 4.052 
HC2 0.26 -2.42 0.51 -0.09 0.19 1.00120 0.99925 19978.4 4.053 
noHC 0.26 -2.42 0.50 -0.09 0.19 1.00115 0.99919 19981.1 4.060 
CT2 0.27 -2.39 0.51 +0.13 0.09 1.00121 0.99926 19977.9 4.052 
noCT 0.28 -2.44 0.51 +0.17 0.14 1.00121 0.99926 19977.9 4.052 
noMD 0.26 -2.42 0.51 -0.09 0.19 1.00121 0.99926 19977.9 4.053 
Zonly 0.18 -2.04 0.52 -0.01 0.08 1.00124 0.99930 19977.9 4.055 
ZRF 0.29 -2.49 0.51 -0.05 0.20 1.00121 0.99926 19977.9 4.052 
Bmod 0.11 -2.08 0.48 +0.03 0.05 1.00119 0.99916 19977.9 4.049 
5000s 0.44 -2.52 0.36 -0.11 0.20 1.00159 0.99900 19983.4 4.108 

Table 19.2 Parameter values found by reasonable alternative fits. 
 
 
Map Bz (G) Br (G) Bφ (G) δS/S (×10-4) 
 mean r.m.s. Mean r.m.s. mean r.m.s. mean r.m.s. 
None 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 
HC2 0.03 0.55 0.00 0.36 0.00 0.01 -0.02 0.28 
noHC 1.16 2.63 0.00 1.53 0.01 0.01 +0.50 1.24 
CT2 0.00 1.10 0.00 3.60 0.00 3.46 +0.01 6.44 
noCT 0.02 0.99 0.00 4.04 0.00 3.97 +0.01 7.16 
noMD 0.01 0.05 0.00 0.16 0.00 0.16 +0.01 0.09 
Zonly -0.22 0.39 0.00 0.19 0.00 0.02 -0.14 0.20 
ZRF 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.02 
Bmod +0.41 0.72 0.00 0.34 0.00 0.03 +0.25 0.36 
5000s -4.33 6.16 -0.33 2.52 0.00 1.19 -2.54 3.50 

Table 19.3 Quality indicators of the difference between alternative fits and the standard fit. 
 
For our final shape error estimate we combine in quadrature a selection of numbers 
from the right hand column of Table 19.3. We select HC2, CT2 and noMD as being 
real uncertainties. We select Bmod because this causes the biggest change and 
exclude the other choices of field components to fit, because including them would 
probably be double counting this error. There is also a shape error due to the 
difference between the measurements and the best fit, the value 1.4 ×10-4 is taken 
from Table 16.1. The resulting total shape error on δS/S is 6.6 ×10-4. 
 
The overall scale uncertainty applies to all of our fits and comes from the limited 
accuracy with which we can match up the Hall and the NMR data. There are two parts 
to this. One part comes from the spread of the NMR-Hall difference over the 4 NMR 
probes. We take the r.m.s. of the difference evaluated by the extrapolation method; 
2.5 G giving δS/S = 1.25 ×10-4. We do not feel that it is safe to divide the r.m.s. by √n 
in this case because it is not really a random error.  
 
The other part comes from the way that any NMR-Hall comparison is influenced by 
the weld thickness used in our conductor model. Figure 19.1 shows the field 
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magnitude measured by the four outermost Hall probes in data set ‘fineZ5000’ 
compared with field models from the geometrical fit. All parameters have their best fit 
values except that the weld thickness in the conductor model has been varied from 1.8 
to 1.9 times the average pitch. A model with the weld having the same pitch as other 
turns is also shown for comparison. Each model has been normalised to match the 
data at the ±0.5 meter points. By inspection of this plot we estimate that our multiplier 
for the weld pitch should be 1.85 with uncertainty ± 0.03. This uncertainty in the weld 
pitch changes the ratio of the field at the NMR probe position to the field in the bulk 
of the mapped volume by ± 1.7 ×10-4, therefore it changes the result of the Hall to 
NMR normalisation by the same amount and this feeds directly into the scale error. 
We combine the two scale errors together in quadrature to get an overall δS/S scale 
error of 2.1 ×10-4. 
 

 
Figure 19.1. Field magnitude measured by the four Hall probes at 1.058 m, plotted versus z and 
compared with field models having various pitches for the centre weld. 
 
The total of scale and shape errors amounts to 7.0 ×10-4. Since the shape errors 
depend strongly on rapidity we plot it as a function of rapidity in Figure 19.2.  
This shows that the total sagitta error is dominated by the scale at low rapidity and by 
the shape at high rapidity.  
 
The shape error at high rapidity is dominated by our uncertainty about the orientation 
of the mapping machine rotation axle, which is highly correlated with our fitted 
orientation of the solenoid coil. This appears as order 0.2 mrad changes in angles Ax 
and Ay between rows 1 and 4 in Table 19.2. It is possible that a future measurement 
of a known resonance mass versus φ at high rapidity will allow us to measure the 
orientation of the field axis relative to the ID coordinates to better than 0.2 mrad and 
thus reduce the part of the shape error that is due to this angle. 
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Figure 19.2 Sagitta error versus rapidity. 

 
20. Final maps for Athena 
Three files are available [7] describing our results in a form suitable for use in Athena. 
The magnetic field service is called many times for each track fit and it must return a 
result very quickly. The best way to do this is with linear interpolation in cylindrical 
coordinates. There is not time for any more complex calculation or even for quadratic 
interpolation. The use of cylindrical coordinates minimises the size of the map 
because the slow variation of the field versus φ allows use of a coarse grid in the φ 
direction. We use a 3D rectangular grid with variable step size. The step size is 
optimised to give an r.m.s. interpolation error of no more than 1 Gauss while keeping 
the map size as small as possible. 
As the standard field for use if the solenoid current is 7730 A we have map7730best.txt 
which represents the geometrical fit plus the Maxwell terms fitted to the data set 
7730a. Then we have produced two alternative files that could be used for special 
studies of systematic effects in track momentum scale. File map7730geom.txt 
represents the geometrical fit to 7730a but without the Maxwell terms. File 
map7730data.txt represents the data set 7730a but without any use of the fit except to 
guide interpolation from the mapped data points to the grid points required by Athena.  
 
All of these files will require corrections of order 0.1% in the future to take account of 
the toroid and JD disc effects. If we run the solenoid at some other current than 7730 
A further work will be needed to create a suitable map.  
 
21. Conclusion 
We have mapped the solenoid field and found a function which obeys Maxwell and 
matches each component of the data within 5 Gauss r.m.s. There are a few residuals 
of up to 50 Gauss on the edges of the inner detector volume but they do not extend far 
enough inside to have a significant bending effect on tracks. The relative error on 
track sagittas due to the field uncertainty, δS/S, is due a common scale uncertainty of 
2.1×10-4 and a shape uncertainty which varies from 0.7×10-4 in the centre to 12×10-4 
at the highest rapidity.  
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