378 research outputs found

    GDPR Privacy Policies in CLAUDETTE: Challenges of Omission, Context and Multilingualism

    Get PDF
    The latest developments in natural language processing and machine learning have created new opportunities in legal text analysis. In particular, we look at the texts of online privacy policies after the implementation of the European General Data Protection Regulation (GDPR). We analyse 32 privacy policies to design a methodology for automated detection and assessment of compliance of these documents. Preliminary results confirm the pressing issues with current privacy policies and the beneficial use of this approach in empowering consumers in making more informed decisions. However, we also encountered several serious issues in the process. This paper introduces the challenges through concrete examples of context dependence, omission of information, and multilingualism

    Epithelial to Mesenchymal Transition Is Mechanistically Linked with Stem Cell Signatures in Prostate Cancer Cells

    Get PDF
    Current management of patients diagnosed with prostate cancer (PCa) is very effective; however, tumor recurrence with Castrate Resistant Prostate Cancer (CRPC) and subsequent metastasis lead to poor survival outcome, suggesting that there is a dire need for novel mechanistic understanding of tumor recurrence, which would be critical for designing novel therapies. The recurrence and the metastasis of PCa are tightly linked with the biology of prostate cancer stem cells or cancer-initiating cells that is reminiscent of the acquisition of Epithelial to Mesenchymal Transition (EMT) phenotype. Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells.In this study, we found that PCa cells with EMT phenotype displayed stem-like cell features characterized by increased expression of Sox2, Nanog, Oct4, Lin28B and/or Notch1, consistent with enhanced clonogenic and sphere (prostasphere)-forming ability and tumorigenecity in mice, which was associated with decreased expression of miR-200 and/or let-7 family. Reversal of EMT by re-expression of miR-200 inhibited prostasphere-forming ability of EMT-type cells and reduced the expression of Notch1 and Lin28B. Down-regulation of Lin28B increased let-7 expression, which was consistent with repressed self-renewal capability.These results suggest that miR-200 played a pivotal role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in PCa. Selective elimination of cancer stem-like cells by reversing the EMT phenotype to Mesenchymal-Epithelial Transition (MET) phenotype using novel agents would be useful for the prevention of tumor recurrence especially by eliminating those cells that are the "Root Cause" of tumor development and recurrence

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses

    Cardiothoracic CT: one-stop-shop procedure? Impact on the management of acute pulmonary embolism

    Get PDF
    In the treatment of pulmonary embolism (PE) two groups of patients are traditionally identified, namely the hemodynamically stable and instable groups. However, in the large group of normotensive patients with PE, there seems to be a subgroup of patients with an increased risk of an adverse outcome, which might benefit from more aggressive therapy than the current standard therapy with anticoagulants. Risk stratification is a commonly used method to define subgroups of patients with either a high or low risk of an adverse outcome. In this review the clinical parameters and biomarkers of myocardial injury and right ventricular dysfunction (RVD) that have been suggested to play an important role in the risk stratification of PE are described first. Secondly, the use of more direct imaging techniques like echocardiography and CT in the assessment of RVD are discussed, followed by a brief outline of new imaging techniques. Finally, two risk stratification models are proposed, combining the markers of RVD with cardiac biomarkers of ischemia to define whether patients should be admitted to the intensive care unit (ICU) and/or be given thrombolysis, admitted to the medical ward, or be safely treated at home with anticoagulant therapy

    Integration of Women Veterans into VA Quality Improvement Research Efforts: What Researchers Need to Know

    Get PDF
    The Department of Veterans Affairs (VA) and other federal agencies require funded researchers to include women in their studies. Historically, many researchers have indicated they will include women in proportion to their VA representation or pointed to their numerical minority as justification for exclusion. However, women’s participation in the military—currently 14% of active military—is rapidly changing veteran demographics, with women among the fastest growing segments of new VA users. These changes will require researchers to meet the challenge of finding ways to adequately represent women veterans for meaningful analysis. We describe women veterans’ health and health-care use, note how VA care is organized to meet their needs, report gender differences in quality, highlight national plans for women veterans’ quality improvement, and discuss VA women’s health research. We then discuss challenges and potential solutions for increasing representation of women veterans in VA research, including steps for implementation research

    Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p><it>Mycobacterium tuberculosis </it>continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them.</p> <p>Results:</p> <p>We completed a bottom up reconstruction of the metabolic network of <it>Mycobacterium tuberculosis </it>H37Rv. This functional <it>in silico </it>bacterium, <it>iNJ</it>661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium <it>in silico </it>on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR) sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints.</p> <p>Conclusion:</p> <p>Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours) in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%). The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between <it>in vitro </it>and <it>in silico </it>or <it>in vivo </it>and <it>in silico </it>results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known drug targets for tuberculosis treatment we proposed new alternative, but equivalent drug targets.</p

    [Plasma 2020 Decadal] The essential role of multi-point measurements in turbulence investigations: the solar wind beyond single scale and beyond the Taylor Hypothesis

    Get PDF
    This paper briefly reviews a number of fundamental measurements that need to be made in order to characterize turbulence in space plasmas such as the solar wind. It has long been known that many of these quantities require simultaneous multipoint measurements to attain a proper characterization that would reveal the fundamental physics of plasma turbulence. The solar wind is an ideal plasma for such an investigation, and it now appears to be technologically feasible to carry out such an investigation, following the pioneering Cluster and MMS missions. Quantities that need to be measured using multipoint measurements include the two-point, two-time second correlation function of velocity, magnetic field and density, and higher order statistical objects such as third and fourth order structure functions. Some details of these requirements are given here, with a eye towards achieving closure on fundamental questions regarding the cascade rate, spectral anisotropy, characteristic coherent structures, intermittency, and dissipation mechanisms that describe plasma turbuelence, as well as its variability with plasma parameters in the solar wind. The motivation for this discussion is the current planning for a proposed Helioswarm mission that would be designed to make these measurements,leading to breakthrough understanding of the physics of space and astrophysical turbulence
    corecore