724 research outputs found

    On similarity rules for transonic flows

    Get PDF
    A method used by Tsien to derive similarity rules for hypersonic flows is utilized to derive Von Karman's similarity rules for transonic flows. At the lower limit of the transonic region of flow the theory yields a formula for the critical stream Mach numbers of a given family of symmetrical profiles. It is further shown that this formula can also be obtained by means of the Prandtl-Glauert small-perturbation method. Investigation of the behavior of the similarity parameter in the region where the thickness coefficient approaches zero and the critical stream Mach number approaches unity shows that it possesses a limiting value characteristic of the prescribed family of shapes

    On a solution of the nonlinear differential equation for transonic flow past a wave-shaped wall

    Get PDF
    The Prandtl-Busemann small-perturbation method is utilized to obtain the flow of a compressible fluid past an infinitely long wave-shaped wall. When the essential assumption for transonic flow (that all Mach numbers in the region of flow are nearly unity) is introduced, the expression for the velocity potential takes the form of a power series in the transonic similarity parameter. On the basis of this form of the solution, an attempt is made to solve the nonlinear differential equation for transonic flow past the wavy wall. The analysis utilized exhibits clearly the difficulties inherent in nonlinear-flow problems

    On the use of residue theory for treating the subsonic flow of a compressible fluid

    Get PDF
    A new mathematical technique, due to Milne-Thomson, is used to obtain an improved form of the method of Poggi for calculating the effect of compressibility on the subsonic flow past an obstacle. By means of this new method, the difficult surface integrals of the original Poggi method can be replaced by line integrals. These line integrals are then solved by the use of residue theory. In this way an equation is obtained giving the second-order effect of compressibility on the velocity of the fluid. The method is practicable for obtaining the higher-order effects of compressibility on the velocity field. As an illustration of the general result, the flow past an elliptic cylinder is discussed

    On a new method for calculating the potential flow past a body of revolution

    Get PDF
    A new method is presented for obtaining the velocity potential of the flow about a body of revolution moving uniformly in the direction of its axis of symmetry in a fluid otherwise at rest. This method is based essentially on the fact that the form of the differential equation for the velocity potential is invariant with regard to conformal transformation of the meridian plane. By means of the conformal transformation of the meridian profile into a circle a system of orthogonal curvilinear coordinates is obtained, the main feature of which is that one of the coordinate lines is the meridian profile itself. The use of this type of coordinate system yields a simple expression of the boundary condition at the surface of the solid and leads to a rational process of iteration for the solution of the differential equation for the velocity potential. It is shown that the velocity potential for an arbitrary body of revolution may be expressed in terms of universal functions which, although not normal, are obtainable by means of simple quadratures. The general results are applied to a body of revolution obtained by revolving a symmetrical Joukowski profile about its axis of symmetry. A numerical example further serves to illustrate the theory

    The flow of a compressible fluid past a sphere

    Get PDF
    The flow of a compressible fluid past a sphere fixed in a uniform stream is calculated to the third order of approximation by means of the Janzen-Rayleigh method. The velocity and the pressure distribution over the surface of the sphere are computed and the terms involving the fourth power of the Mach number, neglected in Rayleigh's calculation, are shown to be of considerable importance as the local velocity of sound is approached on the sphere. The critical Mach number, that is, the value of the Mach number at which the maximum velocity of the fluid past the sphere is just equal to the local velocity of sound, is calculated for both the second and the third approximation and is found to be, respectively, Mcr=0.587 and Mcr=0.573

    Effect of compressibility at high subsonic velocities on the lifting force acting on an elliptic cylinder

    Get PDF
    An extended form of the Ackeret iteration method, applicable to arbitrary profiles, is utilized to calculate the compressible flow at high subsonic velocities past an elliptic cylinder. The angle of attack to the direction of the undisturbed stream is small and the circulation is fixed by the Kutta condition at the trailing end of the major axis. The expression for the lifting force on the elliptic cylinder is derived and shows a first-step improvement of the Prandtl-Glauert rule. It is further shown that the expression for the lifting force, although derived specifically for an elliptic cylinder, may be extended to arbitrary symmetrical profiles
    corecore