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EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VELOCITIES ON THE LIFTING FORCE
ACTING ON AN ELLIPTIC CYLINDER

By Carr KarLan

SUMMARY

An extended form of the Ackeret iteration method, applicable
to arbitrary profiles, is utilized to calculate the compressible flow
at high subsonic velocities past an elliptic cylinder. The angle
of aftack to the direction of the undisturbed stream is small and
the circulation 18 fixed by the Kutta condition at the trailing end
of the major axis. The expression for the lifting force on the
elliptic cylinder 1s derired and shows a first-step improvement
of the Prandil-Glauert rule. It 18 further shown that the
expression for the lifting force, although derived specifically for
an elliptic cylinder, may be extended to arbitrary symmetrical
profiles.

INTRODUCTION

Two methods of approximation, complementary in nature,
have been used for the solution of problems of flow past
bodies in the subsonic-velocity range. They are the Janzen-
Rayleigh method (reference 1), in which the veloecity po-

tential or the stream function is developed in a power series .

of the stream Mach number, and the Ackeret iteration
method (reference 2), in which the velocity potential or the
stream function is developed in & power series of a geometrical
parameter characteristic of the body. The complementary
nature of these two methods lies in the fact that the Janzen-
Rayleigh procedure yields accurate results in the case of
thick bodies, for which the critical stream Mach numbers are
low; whereas the Ackeret iteration process yields accurate
results in the case of slender shapes, for which the eritical
stream Mach numbers are in the neighborhood of unity.

In the Ackeret iteration process the assumption is made
that, if X is a parameter that represents the departure of the
profile shape from a straight-line segment at zero angle of
attack (that is, A may be the thickness, the camber, or the
angle of attack), the stream function ¢, say, may be developed
in & power series of A in which the coefficients are functions
of the plane coordinates z and y and of the stream Mach
number Af;; that is, *

=—Uy+file, y; MONfolx, y; MONE L L. (1

where U is the velocity of the undisturbed flow. By insert-
ing this expression into the fundamental nonlinear differ-
ential equation for ¢ and by equating the coefficients of the
various powers of A to zero, a system of linear differentiel
equations for the functions f,(z,y;3f;) is obtained. The
integration of this system of differential equations can be
performed for as many steps as desired, the first step

JSilz,y;M,) being equivalent to the Prandtl-Glauert approxi-
mation. There is, however, & fundamental difficulty with
the form of the development, equation (1), which does not
appear in the Janzen-Rayleigh method. In the Janzen-
Rayleigh method the expansion of the stream function in
powers of the stream Mach number, namely,

V="t el . L (2)

can always be obtained, whereas the possibility of the ex-
pansion, equation (1), cannot be guaranteed beforehand.
This difficulty in the Ackeret process was avoided in refer-
ences 3 and 4 by choosing as solid boundaries profiles having
no stagnation points. In such cases, a development of the
form of equation (1) is always possible. When, however,
shapes are chosen that possess stagnation points, terms of
the type A® log ) ultimately appear on the right-hand side
of equation (1) and the explicit development in powers of A
is strietly no longer possible. This difficulty may be avoided
by assuming a somewhat more general form for the develop-
ment of the stream function; namely,

y=—Uy+(z, 1) +dolz, P+ . . . (3)

where the shape parameter ) is contained implicitly in the
various functions ¥,. In equation (3) ¢, corresponds to the
Prandtl-Glauert approximation and ¢ is made to satisfy the
exact boundary conditions at the solid and at infinity. For
the purpose of defining and controlling the iteration procedure,
the funetion y,41 is regarded as small compared with the
preceding function ¥, end the derivatives have a similar
relationship. It can be stated now that the aforementioned
difficulty is more apparent than real, for in carrying out the
iterative steps according to equation (1) A behaves like a
dummy parameter, which serves only to regulate the itera-
tion process in exactly the same manner as equation (3).
For slender bodies the first few steps of the Ackeret itera-
tion method may be expected to yield a good result with the
exception of a small region in the neighborhood of a stagna-
tion point. Hantzsche, in reference 5, treated the cese of an
elliptic cylinder at zero incidence in a uniform stream accord-
ing to Ackeret’s process as represented by equation (1), with
the exact boundary conditions at the solid and at infinity
being satisfied. These calculations were carried through
the A-terms and included & term X log . A comparison,
made in reference 5, of this result with that obtained by the
present author according to the Janzen-Rayleigh method
49


https://core.ac.uk/display/42794485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

50 REPORT NO. 834—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

showed agreement in the terms common to the two develop-
ments. A similar comparison made for the “bump” in
reference 3 also showed complete agreement in the terms
common to the two methods. These comparisons illustrate
the fact that solutions obtained by the Janzen-Rayleigh
and the Ackeret methods are simply different representations
of a single unique solution. In particuler, it is evident that
the Janzen-Rayleigh method, which is valid at stagnation
points, includes parts of the Ackeret development and,
conversely, the Ackeret development includes parts of the
Janzen-Rayleigh result. Although the first few terms of
equation (3) do not yield very accurste results at stagnation
points, these terms nevertheless represent correctly, to some
extent, the effect of compressibility at such points. The
accuracy of the calculations obviously depends on the num-
ber of terms ¢, derived, each new term reducing the extent
of the region of inaccuracy in the neighborhood of & stagna-
tion point.

The question of the convergence of the sequence of func-
tions, equation (3), is a difficult one and should be thoroughly
investigated. Schmieden and Kawelki (reference 6) state
that both the Janzen-Rayleigh and the Ackeret develop-
ments diverge when the local velocity of sound is first ex-
ceeded in the region of flow, that is, at the critical value of
the stream Mach number. This statement is contradicted,
however, by results obtained by means of hodograph or
velocity variables. In general, as shown in reference 7, the
limit of steady potential fiow of a compressible fluid is de-
termined by the vanishing of the Jacobian of the transforma-
tion from physical z, y-variables to hodograph ¢, ¢-variables.
The vanishing of this functional determinant does not neces-
sarily occur when the local Mach number first reaches unity
and, consequently, there exist continuous solutions of the
general differential equation governing the flow of a com-
pressible fluid for which a part of the region of flow is super-
sonic. It is reasonable to conclude, therefore, that the series
solutions given by equations (2} and (3) diverge at the value
of the stream Mach number that marks the limit of poten-
tial flow rather than at the value for which the local velocity
of sound is first exceeded in the flow,

The Ackeret process in the form of equation (1), but for
the velocity potential, was used to calculate the flow past &
bump and past & circular arc profile in references 3 and 4,
respectively. This calculation was possible because the
profiles considered did not possess stagnation points. As a
consequence, the problem could be treated completely in the
physical plane and, moreover, the houndary conditions on
the velocity potential were tractable. In general, however,
when shapes with stagnation points are treated, the Ackeret
process in the form of equation (3) instead of in the form of
equation (1) should be utilized. In such cases the problem
is most conveniently treated in a new plane related to the
plane of flow by an affine transformation. In this plane,
however, the boundary conditions for the velocity potential
become very complicated. On the other hand, the boundary
condition for the stream function, y=0 at the solid, is
invariant for affine transformations and it is_.therefore
suggested that the stream function be utilized. The trans-

ference of the problem to an affinely connected plane un-
fortunately introduces a distortion in the actual profile that
varies with the stream Mach number. In the case of an
elliptic profile, however, this distortion does not matter, for
the affine distortion of an ellipse leads to another ellipse.
This property of the ellipse makes it a preferred profile for
the Ackeret iteration process in the form of equation (3) and
is also the reason it is chosen as the solid boundary for the
problem treated in the present paper. Specifically, the prob-
lem treated herein is the determination of the flow of & com-
pressible fluid past an elliptic cylinder set at 2 small angle of |
incidence in a uniform stream, with circulation determined
by the Kutta condition at thé trailing end of the major axis.
The main purpose of this calculation is to obtain some infor-
mation with regard to the effect of compressibility at high
subsonic stream Mach numbers on the lifting force acting
on an elliptic cylinder. A calculation is now in progress in
the Physical Research Division of the Langley Memorial
Aeronautical Laboratory to find the effect of compressibility
at high subsonic stream Mach numbers on the moment and
on the location of the center of pressure of an elliptic eylinder.

CALCULATION OF THE FIRST AND SECOND APPROXIMATIONS

The equation of continuity can be writien as

o] o) .
sx(2)tsr(Ge)=0 . @
and the condition for irrotational flow as
ov
X T“O ®)

where. . _

X, ¥ rectangular Cartesian coordinates in physical flow plane

u, v components of velocity along N-axis and Y-axis,
respectively

p variable density of fluid

n constant density of undisturbed fluid at infinity -

Equation (8) defines a velocily potential ¢, where

O
=3

3 (6)
‘U=5T7 o

and equation (4) defines a mass flow or stream function ¢,
where._ . -

u= _ﬂw

X p ok )
v___aq."-:‘ an‘/’
PO

From equations (4) and (5), with the use of equations (6) and
(7), respectively, the following alternate forms of the basic
differential equation are obtained:

) o6\, D [o)

3% ﬂlﬁ +5? p_Y = (8)
and 5
1 O

= P aX)+"Y<Z Y )= ©)
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For reasons stated in the ‘“Introduction,” equation (9) for
the stream function will be treated in the present paper.
The difficulty of obtaining a solution lies in the fact that the
density of the fluid p is related to u and v because of the
dependence of p on the local pressure. If it is postulated
that the fluid is nonviscous and if the fluid is assumed to
flow from infinity with a constant velocity U, the total energy
of the fluid will then have the same value at every point in
the region of flow. If p and ¢ denote the pressure and the
velocity of the fluid, respectively, Bernoulli’s equation
becomes

[ 245 @-tm=0 (10)

where the lower limit of integration refers to the starting
conditions at infinity. Moreover, p and p are connected
by some known adiabatic equation of state such as

P_D

pra -=Constant
1

(11)
where, in the case of a perfect gas, ¥ denotes the ratio of

specific heats at constant pressure and at constant volume.
By means of the definition of the velocity of sound,

dp_ p
2 — —_—
“=2="% (12)

the following relations are obtained from equation (10):

B [1—7—;—1 M (%,— 1)] (13)
P=p: [1 "7';_1 ALy (_g’_ 1) =
p=p; [1 ~1 L agp (797’;—1)]’%‘ (15)

where M}=g is the Mach number of the undisturbed stream

(14)

at infinity and ¢®=u?+o%.
By means of equations (7), equation (14) can be rewritten
in the form

ot [B (gt ] T e

where ¥y and ¢y denote dy/0.X and Oy/dY, respectively. If,
d’xz_l_ ‘I/Yz

for the moment, p;/p and e —1 are considered to be

dependent and independent variables, respectively, a
Maclaurin expansion in the neighborhood of the undisturbed
'+ ¥y
i

stream, where ~—1=0 and Bpl =1, yields

2 2
B_143 - (1)

RGP a0+ D -] (B -1 )
(17)

842051—49——6

M?

where y’=ﬁl—2 and y’—1=1_ 7 The form of this

development has been chosen to be consistent with the
Ackeret iteration process, which is essentially an iteration
around an undisturbed stream of zero incidence.
sponding to equation (3),

v=—UY+di+dat . .. (18)

where ¥4, 18 Tegarded as small compared with ¢, and the
derivatives have a similar relationship. When this ex-
pression for ¢ is substituted into equation (17) and ysy is
noted to be of the same order as y,x* or ¥;¢?, then inclusive
of the second power in the derivatives,

%-:1_(“2_1) Yiv (u2—1) (ﬁ;{%_%x;'l‘fw’)

3 =D+ DE-D L (9)

When this expression for p/p is substituted into the basic
differential equation (9} and terms of equal order of magnitude
in the derivatives of ¥, are equated, the following differential
equations for ¢, and ¥- are obtained:

'[’1xx+#2§011’17=0 (20)
and
iy

‘szx‘[‘ #"/fzn'= (#2—' 1) {7 'Plxx‘*‘ 2 %x Yixy
+ 4134 CrH D= 1) B |

These differential equations are most easily solved by first
applying the affine transformation

2n

=X
22
y=% V=12 Y 22)
Equation (20) then becomes a Laplace equation
Vet Y1y=0 (23)

and equation (21) becomes a Poisson equation

¢2:=+'¢’2w=(ﬁz— 1) [gg l1l’l::o:'|"2 "‘% ‘Pl:y

+B+a+DE D] ] @0

For purposes of calculation & new stream function ¥* may
be conveniently introduced, where

y=nTY* (25)
From equations (22) it can be seen that
'[’x= ¢z=#U§l’*z
and )
‘PY'—_—"; ¥y= U\b*u

so that the undisturbed fiows, at zero angles of incidence,
in the physical and affinely distorted planes are identical;
that is, (Yph1=(U¢¥*):. With the introduction of the

Corre-
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stream function ¢* equations (23) and (24) become

\[’*I:z"l'lb*lvu:o (26)

and
"’*2=:+‘p*2uu= (#2— 1){\0*”‘1&*1::‘-!— 2\"*11#’*1:11
+B+ G+ 1)(#2—1)]'P*1ﬁb*1ur}

or, with the use of equation (26),

V¥t ¥ = (0 —1){—[2+(7+1)(# —DW* ¥ e
+2‘l’ lz‘p 1::1/}

Equations (26) and (27) show that, in order to calculate
the various approximations, the incompressible flow past
the distorted profile in the zy-plane must be known. Thus,
if a profile is given in the physical XY-plane, it will be neces-
sary to find the conformal transformation to a circle of the
distorted profile in the zy-plane for each value of the stream
Mach number, since the affine distortion of a profile depends
on the stream Mach number, as shown by equation (22).
In general, then, the problem to be solved is the flow past
an arbitrary profile in the affinely distorted zy-plane. This
procedure in general involves the laborious caleulations of
the coefficients of conformal transformations to & circle for a
number of values of the stream Mach number in such a
way that the distorted profiles in the xy-plane correspond
to the given profile in the physical X¥-plane. In the case
of an ellipse, however, the distorted profile is again an ellipse,
and it is therefore a simple matter to transfer the results
obtained in the zy-plane to the XY-plane of the original
elliptic profile. In the present paper the elliptic profile is
so oriented that its major axis lies along the X-axis. The
relation between the profiles in the two planes is then given
by

(27)

a=a’

=]

b=—b’

Tl

= c“-k” Ly

(28)
R=R'+ 1;“ 1%

tan a=% tan o’ (or, to the first order, =% a')
where
R—— (a+5)

a semimajor axis of ellipse in affinely distorted plane
b semiminor axis of ellipse in affinely distorted plane
¢ semifocal distance of ellipse in affinely distorted plane
« angle of incidence of ellipse in affinely distorted plane

and the prime indicates corresponding values in the physical
plane.

The solution of equation (26) is in general the imaginary
part of an anelytic function w;(z) where z=z+iy. (The
asterisk has been dropped.) It is easy then to verify that

\blz='2l,£ (wu_wl;)
V=g (w1eBiz)
5 zy=% (Wisz+W17)

1 _
‘/'uz=—llfm=§i (Wizs—Wn3)

where a bar indicates conjugate-complex quantities. There-
fore,

2% h..=1.P. (WrzeWr+ WiasWi7) = (Wrs+i3) LY. w,.
and

2‘]’1:‘[’1”:1 P (wzzzwu_wluﬁl;)=_i(wu_ﬁl;) R.P.wia

Equation (27) can then be written as
Sl (P—DLP.[§ o), +<a+4)(w,.wu):| (29)

where o= (y+1)(u2—1).

Consider now a circle of radius R, with its center at the
origin of the z/-plane, into which the distorted profile in
the z-plane is mapped by means of a conformal transforma-
tion. Any point on the circle can be expressed in the form

2’=2'+1y'=R (cos £—1 sin E)=Re#

so that the point describes the circle in the clockwise sense
and leaves the region outside the circle on the Ieft. If now
¢t==£-+1y, the transformation -

2’=Re % (30)
yields a circle of radius 2 when 7=0 and the infinite region
of the z’-plane when y=<4 . Equation (30) can be looked
upon as the transformation from Cartesian coordinates z’, y*
to polar coordinates Rev,—¢. The conformal transformation
of an arbitrary profile in the z-plane into a cirele of radius R
in the z’-plane, with center at the origin, can therefore be
written

2=/(e") (31)

where n=0 yields the parametric equations of the profile in
the z-plane.

When ¢ and ¢ are introduced as mdopendont variables,
equation (29) becomes

s _
2%

The general solution of equation (32) or of equation (28)
is obtained directly and is

— 30— DLP.[ G o0, G (o )00, | 32)

h=—3 (=D LP.| § 3o+ o+ 4) B FO) | (39)

where F(¢} is an arbitrary function to be determined accord-
ing to the boundary conditions at the solid surface and at

"infinity.
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Consider now an ellipse in the dffine zplane with semi- | Now, the transformation
major axis ¢ and semiminor axis b. The undisturbed stream pmz b O _ (36)
at infinity makes a small angle o with the negative direction 4z’ .o
of the z-axis, and the circulation is determined according to :
the Kutta condition that the downstream end of the major | maps the region external to the ellipse in the z-plane into

axis is a stagnation point. In accordance with the Ackeret | the region external to a circle of radius R=} (a-4b) with
center at the origin of the 2z’-plane. The complex potentml _

process,
Y=—yt+t ... (34) | for the flow considered is given by

so that the stream function is expanded around an undis- R '

turbed stream at zero incidence. Since the angle of attack fw=——(z’e‘¢+ G )—21'1? gin « log % (37)

has been assumed small, powers of & higher than the first
are neglected. The boundary conditions are then, at the | VWhen the variable t is introduced by means of equation (30),

surface of the ellipse, n=(3p, —y equation (36) becomes
=
=0 (352) z=¢ cos ({+1N) (38a)

ity mee .
and, at infinity, 5=, and equation (37) becomes

[

Wi,

oz w=—2R cos ({—a)—2RY sin « (38b)

oY

dy 35h where a=c¢ cosh A and b=¢ sinh \. This expression for w

I (35b) includes the uniform undisturbed stream —z which must be

a=0 extracted in order to obtain ;. Thus, for & small angle of

o0 attack e,

2

oy wy=c cos ({+irn)—2R cos f—2R (sin ¢+¢)a (89)
and

1!11=I.P.'w1

=—c¢ sinh (y+2) sin £+ 2R sinh 4 sin §—2R (sinh 4 cos §+9)a

It can be easily verified that this expression for y, satisfies the boundary conditions stated in equations (35) and also
that the downstream end of the major axis is & st,a.gnation point.

Similarly, the most direct way to determine ¢, is to consider it to be the imaginary part of nonanalytlc functlon W,
of { and ¥. Thus, from equations (33), (38), and (39),

W= (=D} oc cos F— N+ (o-+Oeleos F—N)— 2 & cos F—2 % sin F-+Done+ F1)]
In order to satisfy the boundary condition y:=0 at the surface, =0, it is a simple matter to supply the functions

‘of ¢ needed to make the coefficients of wy, and wy,? vanish for y=0. For example, cos (f—iA)=cos (f—i\} for 3=0.
Thus,

.p,:—— (w—1DLP. { ac [cos (T—1i\)—cos (I’ ]y
R C oo Lo R R .
ERERWLY. I:cos (F—iN—2 5 cos r—2 N a(sin F+F)—cos (r—iN)+2 5 Cos+2 = a(sin £+t )] wu} (40)

In order to satisfy the boundary condition at infinity and the condition that the downstream end of the major axis
be a stagnation point, the procedure, according to equations (7), (22}, and (25), is as follows: .

p—l”g(uz—%vz)=21§£aa“? gg;{(m_@) (4

From equations (39} to (41) it then follows that at infinity

ﬁj(’uz_% Tz)ﬂ_m=% (#*—1) (a-+4) aL—I—b ta
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Hence, in order to satisfy the boundary conditions at infinity, ug=%¢j=0 and v,=-—%%3=: 0, & term — % b (u?—1)(o+4)c sin,

the imaginary part of which vanishes for =0, must be added to the expression for wy. This addition to ws introduces
a velocity at the downstream end of the major axis, given by

o (1 . :
plU(‘Ua F%)é-r,n-o— 4(u’ 1) (o+4) ta

Again, in order to render (¢==, y=0) a stagnation point, & term —% b (u—1) (0+4) of satisfying the boundary condi-
tions at the solid and at infinity must be added to the expression for w,. Finally then
v.=1. P. ws ' o -

=3 (=D L P. [} oo foos F—iN)—cos (=] s+ (e+4) [ cos F—i)—2 F oos T
—2 8 o (sinT+P)—cos (=N +2 F eos 42 %  (sin 1+0) | w26 (o+4)(sin £+ of (42)
The complete expression for y, obtained from equations (34), (39), and (42), is then given by
y=—1.P. (23 cos £4-2Ra (sin 3‘—{-{)—]—%(#’—1)[—%00 [cos (F—iN)—cos (¢—iA)Juns?
+(e+4)c [cos F—iN)—2 % cos §—2 Ig? e (sin §4F)—cos (f—i\)+2 %z cos {42 {.—?a (sin H—r)] Wis
+2b(e+Oe sin §+1)]) 43)

where w, is obtained from equation (39) and w,,=%u? %‘: :

CALCULATION OF THE VELOCITY COMPONENTS u AND v

The"components « and » of the velocity of the compressible fluid p-r:tst the actual profile in the physical XY -plane can be
put into the following convenient form by means of equations (7), (22), and (25):

p T\ Oy, Oy _.dtoy_df D —

where w is the expression on the right-hand side of equation (43) with I. P. omitted. It follows that
fy(u—%v)=s-—lﬁ—‘(;m(2§ [—sin {+a (1+cos s‘)]-l—;i— (#¥—1) (a+4; -(1+cos s‘)%a-
+5 (1) o3 b sin (5—i0)+Tisin g+ ) —leos ¢ iN)— cos(F—iN) v
+36 =D+ sinG—N—2Zsinr+ 28 et +eost) |t sin ¢+ —2Zsinr+22 2 (1408 0) B
+[cos G—n—2F cos 72 F a(sin F4+1)— cos (r— M) +2 T cos s+2 T o (sin g-+0) i) (45)

where equations (28) provide the correspondence between the distorted ellipse in the z-plane and the actual ellipse in the
Z-plane. :

Equation (45) will now be utilized to calculate the lift on an elliptic cylinder in compressible flow. For this calculation
a control contour, which eventually is taken as infinitely large, will be applied in the usual manner. The elimination
of the variable { in equation (45) and in the equations needed for the calculation of the lift is in general impossible and in
the present example undesirable. Since the regions &t infinity correspond in the 2z- and 2’-planes, it is convenient to choose
a large circle in the z’-plane as the control contour and to effect all the calculations with £ end 5 as independent vari-
ables. The advantage gained by this procedure is 2 great reduction in labor, in that on a circle » is constant and henee
only functiomns of the single variable 2’ (=e %) appear. The first step is to obtain developments for pu/p;U and pv/n U in
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the neighborhood of infinity and then to form the combination p_fU (u—gi—v). This calculation, according to equation (45),
yields the following result: .

Lptu—in)=—(1+ia)+ 2 [ 143 =10+ ;35 || (—w2— 0+ 5 |
+ il [t Gl) -nGto] [a-w #4040 32 e s (5 W= [[a-w =04 2]
—ie 2 =0 [ (A= =t g |+ - - (48)
where z'=¢™%. Since . U_U ¥y and _U_ ﬁ ¥z, it follows from equations (17) and (46) that

1

O A R o
+ 3 +b+4 (355) o=+ |[ (240 Hiewt (2= 3) | g (=1 (- )} . (47

CALCULATION OF THE LIFT

In a compressible flow as in an incompressible flow, the lift is given by (reference 8) _
Lc=P1 ur ¢ (48)

where T, is the circulation round the profile and where, by definition,
T— §(u dX+od¥)=R.P. §(u—iu)dz - (49)

Now, from equation (22), ’ '

X=z

Y=py
Hence
Since z=¢ cos (¢-+1A),

dZ=— +“ ¢ sin (_(-l—i)\)dg'—— ¢ sin T—iNdy

For the evaluation of the line integral for T, the control contour is a large circle in the z’-plane. Therefore, 4 is a

/
constant and df =df=1 d‘7z ; hence,

az=—[ a+w (z,e,ﬁ—z')ﬂl—u) (G-=)]|%

where 2’=e"%, The desired expression for u—iv, obtained from equations (46) and (47), is
. . ] b 1 -
b =iy =—1—iuat 2 [ 14 § (=1 o+ || a—adr— ) G- (#=3) |+ .. (51)

Equations (49) to (51), with only terms containing the factor dz’/z’ contributing to the line integral for I, then yield the
following result:

. T=trRUpe] 14§ (A=1) (o44) 3| (52)

KL

(50)
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If @, b, R, and o are replaced by o', ¥, R’, and o according
to the correspondence equations (28), then for the actual
elliptic cylinder in the physical flow plane Z,

I‘c=41rR'Ua_'u-[-21rUa’b’ [(1-——#) +% (2—1) (o’+4):|

Since the circulation in the incompressible case, M,=0 or
u=1,is
T,=4xR'Uda’ -

the ratio I',/T, is given by

%=M+2%% [(l—u) +é (W*—1) (0+4):|

With R'=é (@45 and o=(y+1) (P—1),

where ¢’ is the thickness coefficient d’fa’ of the elliptic
cylinder in the physical flow plane. This equation represents
a first-step improvement of the Prandtl-Glauert approxima-
tion and reduces to that result when ¢'—0.

Although equation (53) has been derived specifically for an
elliptic cylinder, it will be shown that the result can be ex-
tended to & slender arbitrary symmetricel profile. Hantzsche
and Wendt (reference 9) derived a similer relation for the
case of & symmetrical Joukowski profile with a sharp trail-
ing edge. The result of Hantzsche and Wendt may be
written as :

%=%=”+ﬁ—? I:.“(#— 1) +% (v+1) (#2— 1)’] (54)

Note that the function of u contained between the brackets.

is the same in equations (53) and (54). This coincidence
/
suggests a correspondence between the factors T?tl—_t7 and TE—-[—e .

A correspondence is obtained in the following manner: It

is well known that by means of the mapping function

the circle of radius ¢%/4, with its center at the origin of ‘the
Z'-plane, is mapped into the line segment extending from

z=—c¢ to z=c, and the circle of radius % (1+¢€), with its

center at Z'=¢ 2 is mapped into & symmetrical Joukowski

2
profile with sharp trailing edge in the Z’-plane. Now
c!
v _B-m
[ET ) - (55)
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or, with R=% (1+¢),

1

# _H—e—ﬂ:;

1+t 2(14e)
¢ 1 L)’
T14e 2\1+e

E - ’
Thus, to the first power ine, l_f{-—t’= l_e—re and the correspond-

ence between equations (53) and (54) is established.
In the case of an arbitrary symmetrical profile, the Theo-
dorsen method (se¢ reference 10) is particularly well suited

to obtain an expression corresponding to ﬂ—t:? An essential

feature of the potential theory of arbitrary wing profiles de-
veloped by Theodorsen is a rapidly convergent proceduroe for
obtaining the conformal transformation of the profile to a
circle, also the radius R of the circle. The coefficient of the

%—term of this conformal transformation, denoted by c¢%/4,

and the radius R of the conformal circle define an ellipse

Z=¢ cos (£-+1\)

with
R=§@
Then, from equation (55),
t 1
72 =™

and, therefore, for an arbitrary symmetrical profile, the for-
mula that corresponds to equation (53} may be written

r=rimuty =™ [u =D+F k0 w-17] (560

Table I shdws values of the ratio L,/L,, calculated by
means of equation (53), for various values of the thickness
coefficient ¢’ and the stream Mach number M, (with y=1.4
for air) and figure 1 shows the corresponding graphs with Af,
as abscissa and L./L; as ordinate.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NarionaL Apvisory COMMITTEE FOR AERONAUTICS,
Lawxcrey Fierp, Va., May 16, 1946.
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TABLE I

RATIO OF LIFTS FOR COMPRESSIBLE AND
INCOMPRESSIBLE FLOWS

La[Li
M B pt +0.8(u?
B(u2—1)3

£=0.08 #=0.10 =016 Y=020
. 10 1.0050 1.0101 0.0051 1.0053 1.0058 1.0057 1.0089
.20 1.0208 1.0417 0221 1.0217 1.0228 1.0235 1.0243
.30 1.0483 1.0989 . 0685 1.0510 1.0534 1.0567 L0577
.40 1.0021 1.1905 1212 1.0968 1.1021 1.1089 1.1113
.45 1.1198 1.258¢ 1728 1. 1.1355 1.1423 1,1488
.50 1.1547 1.3333 . 2453 1.1684 1.1770 1. 1867 1.1956
.66 1.1974 1.43387 L3402 1. 2140 1. 2201 1.2429 1.2666
.60 1.2500 £625 . 5023 1.2739 1.2087 1.3155 1.3337
.66 1,3150 1.7816 . 7976 1.3510 1,3830 1.4121 1.4388
.70 1.4003 1, 9608 1.1144 1. 4534 1. 50168 1. 5456 1. 5860
.76 1.5119 2.2858 1. 7660 1. 5955 1.6718 1.7400 1.8046
.80 1. 6067 2.7718 3, 0074 1. 8009 1. 8401 2.0589 2.1679
.86 1.83983 2.6037 8.7128 2.1732 2.4231 2.6513 2.8605
90 2.2942 5.2832 13,8787 2.0548 3. 5654 4, 1042 4. 6064
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FIGURE 1. —Ratlo of lifts for compressible and Incompressible fluids as funetion of stream
Mach number.



