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EFFECT OF CONU?RESSI1311JTY AT HIGH SUBSONIC VELOCITIES ON THE LIFTING FORCE
ACTING ON AN ELLIPTIC CYLINDER

By CARL T{APLAK

SUMMARY

An extended jorm oj the Ackeret iteration method, applicable
to arbitrary projiles, is utilized to calculate the comprestible$ow
at high subsonic celom”tiespast an elliptic cylinder. The angle
t]j atiack to the direetion of the undisturbed dream i8 small and
the circulation i8fized by the Kutta condition at the trailing end
ofthe major axis. The expression jor the [ifiing force on the
elliptic cylinder is derired and shows a jirst-8tep improvement
oj the Prandtl-(Xauert rule. It h further 8hown that the
exprestin for the lijling force, althowgh clerked speci$ca?ly for
an elliptic ey[inder, may be e.rtended to arbtlrary m~mmetn”ca[
profle8.

INTRODUCTION

Two methods of approximation, complementary in nature,
have been used for the solution of problems of flow past
bodies in the subsonic-velocity range. They are the Janzen-
Rayleigh method (reference 1), in which the velocity po-
tential or the stream function is developed in a power series
of the stream Mach number, and the Ackeret iteration
method (reference 2), in which the velocity potential or the
stream function is developed in a power seriesof a geometrical
pmmneter characteristic of the body. The complementary
nature of these two methods lies in the fact that the Janzen-
Rayleigh procedure yields accurate results in the case of
thick bodies, for which the critical stream Mach numbers are
low; whereas the Ackeret iteration process yields accurate
results in the case of slender shapes, for which the c.ritical
stream Mach numbers are in the neighborhood of unity.

In the Ackeret iteration process the assumption is made
thut.,if k is a parameter thut represents the departure of the
profile shape from a straight-line segment at zero angle of
attack (that is, x may be the thickness, the camber, or the
angle of attack), the stream function ~, say, maybe deveIoped
in a power series of k in which the coefficients are functions
of the plane coordinates z and y and of the stream Mach
number .341.;that is, “

#= – uY+.fl($!Y;w~+.wl Y;M)k’+ . .. (1)

where U is the velocity of the undisturbed flow. By insert-
ing this ~xprewion into the fundamental nonlinear difYer-
entid equation for # and by equating the coefficients of the
various powers of X to zero, a system of linear differential
cquations for the functions .fm(x,y;MJ is obtained. The
integration of this system of differential equations can be
performed for as many steps as desired, the fit step

jl(z,Y;fiIJ beirg equivalent to the Prandtl-G1auert approxi-
mation. There is, however, a fundamental difficulty with
the form of the development, equation (1),whichdoes not
appear in the Janzen-Rayleigh method. In th~ Janzen-
Rayleigh method the e.xpmsion of the stream function in
powers of the stream Mach number, namcly,

4=#o+i@f12+#2w+ . . . (2)

can always be obtained, whereas the possibility of the m-
pansion, equation (1}, cannot be guaranteed beforehand.
This difficulty in the Ackeret process was avoided-in refer-
ences 3 and 4 by choosing as solid boundaries proties having
no stagnation points. In such cases, a development of the
form of equation (1) is always possible. When, however,
shapes are chosen that possew stagnation points, terms of
the type k’ log x ultimately appear on the right-hand side
of equation (1) and the explicit development in powers of X
is strictly no longer possible. This diEiculty may be avoided
by assuming a somewhat more general form for the develop-
mentt of the stream function; namely,

+=– uY+!h(~)Y)++2(% y)+ . . . (3)

where the shape parameter x is contained implicitly in the
various functions v?.. In equation (3) #, corresponds to the
Prandtl-Glauert approximation and # is made to satisfy the
exact boundary conditions at the solid and at intlnity. l??or
the purpose of detlningand controlling the iteration procedure,
the function $n+l is regarded as small compared with the.
preceding function #z and the derivatives have a similar
relationship. It can be stated now that the aforementioned
dMculty is more apparent than real, for in carrying out the
iterative steps according to equation (1) h behaves like a
dummy parameter, which servea only to regulate the itera-
tion process in exactly the same manner as equation (3).

For slender bodies the fit few steps of the Ackeret itera-
tion method may be expected to yield a good result with the
exception of a small region in the neighborhood of a stagna-
tion poinh Hantzsche, in reference 5, treated the case of an
elliptic cylinder at zero incidence in a uniform stream accord-
ing to Ackeret’s process as represented by equation (l), with
the exact boundary conditions at the solid and at infinity
being satisfied. These calculations were carried through
the k%erms and included a term ~4 log k. A comparison,
made in reference 5, of this result with that obtained by the
present author according to the Janzen-Rayleigh method ..
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showed agreement in the terms common to the two develop-
ments. A similar comparison made for the “bump” in
reference 3 also showed complete agreement in the terms
common to the two methods. These comparisons illustrate
the fact that solutions obtained by the Janzen-Rayleigh
and the Ackeret methods are simply different representations
of a single unique solution. In particular, it is evident that
the Janzen-Rayleigh method, which is valid at stagnation
points, includes parts of the Ackeret development and,
conversely, the Ackeret development includes parts of the
Janzen-Rayleigh result, Although the first few terms of
equation (3) do not yield very accurate results at stagnation
points, these terms nevertheless represent correctly, to some
extent, the effect of compressibility at such points. The
accuracy of the calculations obviously depends on the num-
ber of terms #n dmived, each new term reducing the extent
of the region of inaccuracy in the neighborhood of a stagna-
tion point.

The question of the convergence of the sequence of func-
tions, equation (3), is a difficult one and should be thoroughly
invmtigated. Schmieden and Kawalki (reference 6) state
that both the Janzen-Rayleigh and the Ackeret develop-
ments diverge when the local Yelocity of sound is first ex-
ceeded in the region of flow, that is, at the critical value of
the stream Mach number, This statement is contradicted,
however, by results obtained by means of hodograph or
velocity variables. In general, as shown in reference 7, the
limit of steady potential flow of a compressible fluid is de.-
termiued by the vanishing of the Jacobian of the transforma-
tion from physical x, y-variables to hodograph 0, q-variables.
The vanishing of .thiafunctional determinant does not neces-
sarily occur when the local Mach number first reaches unity
and, consequently, there exist continuous solutions of the
general differential equation governing the flow of a com-
pressiblefluid for which a part of the region of flow is super-
sonic. It is reasonable to conclude, therefore, that the series
solutions given by equations (2) and (3) diverge at the value
of the stream Mach number that marks the h-nit of poten-
tial flow rather than at the value for which the 10C81velocity
of sound is fist exceeded in the flow.

The. Ackeret process in the form of equation (I), but for
the velocity potential, was used to calculate the flow past a
bump and past a circular arc protie in references 3 and 4,
respectively. This calculation was possible because the
profiles considered did not possess stagnation points. As a
consequence, the problem could be treated completely in the
physical plane and, moreover, the lmundary conditions on
the velocity potentiaI were tractable. In general, however,
when shapes with stagnation points are treated, the Ackeret
process in the form of equation (3) instead of in the form of
equation (1) should be utilized, In such casesthe problem
is most conveniently treated in a new plane related to the
plane of flow by an af%ne transformation. In this plane,
however, the boundary conditions for the velocity potential
become very complicated. On the other hand, the boundary
condition for the stream function, #= O at the soIid, is
invariant for affine transformations and it is-..twreforere
suggested that the stream function be utiIized. The trans-

ference of the problem to an affinely connected plane un-
fortunately introduces a distortion in the actual profile that
varies With the stream Mach number. IIL the case of rm
elliptic profile, however, this distortion does not matter, for
the afiine distortion of an ellipse leads to rmothrr ellipse.
This property of the ellipse makes it a preferred profih’ for
the Ackeret iteratioriprocess in the form of equation (3) and
is also the reason it is chosen as the soIid boundary for the
problem treated in the present paper. Specifically, the prob-
lem treated herein is the determination of the flow of a com-
pressible fluid past an eIlipt,iccylinder set at a sndl anglp of
incidence in a uniform stream, with circulation dctmnincd
by the Kutta condition at the trailing end of the mujor axis.
The main purpose of this calculation is to obtain some infor-
mation with regard to the effect of compressibility at high
subsonic stream Mach numbers on the lifting form acting
on an elliptic cylinder. A calculation is now in progress in
the Physical Research DivXlon of the Langley Mcmorird
Aeronautical Laboratory to find the effect of compressibility
at high subsonic stream Mach numbers on the moment and
on the location of the center of pressureof an elliptic cylinder.

CALCULATION OF THE FIRST AND SECOND APPROXIMATIOIVS

The equation of continuity can be written as

M:”)+wv)=o. (4)
and the condition for irrotational flow as

b au_—
ax m--” (5)

where.
iX, Y rectangular Cartesian coordinates in pllysicaI flow piano
u, v components of veIocity along X-axis and Y-axis,

respectively
P variable density of fluid
PI constant density of undisturbed fluid at inllnity ,

Equation (6) defines a velocity potential @, whero

w

1‘=a
M

“m’
((I)

and equation (4) defines a mass flow or stream function V,
where. . —

(7)

From equations (4)and (5),withthe use of equations (6)and
(7),respectively, the following alternati forms of tho bwic
ditlerential equation are obtained:

and

M%)+w%)=o

(8)

(9)
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For reasons stated in the “Introduction,” equation (9) for
the stream function will be treated in the present paper.
The difficulty of obtaining a solution lies in the fact that the
density of the fluid p is related to u and o because of the
dependence of p on the local pressure. If it is postulated
that the fluid is nonviaecms and if the fluid is assumed to
flow from infhity with a constant velocity U, the total ener&
of the fluid will then have the same value at every point in
the region of flow. If p and q denote the prcsure and the
velocity of the fluid, respectively, Bernoulli’s equation
becomes

(10)

where the lower limit of integration refers to the starting
conditions at infinity. Moreover, p and p are connected
by some known adiabatic equation of state such as

-a=a=’co~~anfi
P-f Ply

(11)

where, in the case of a perfect gas, ~ denotes the ratio of
specific heats at constant prwsure and at constant volume.

By means of the definition of the velocity of sound,

the following relations are obtained from equation (10):

[
I#=c: l–=“’($+

[P=PI 1-y M,2($_1)]+l

(12)

(13)

(14)

[
p=p, 1

-= ’’12($WF’ ’15’

T7
where All ==u is the Mach number of the undisturbed stream

at infinity and q2=ua+v’.
By means of equations (7), equation (14) cin be rewritten

in the form
1

{
L= 1—L

[(

$X’+h”
——

–1 al? $ ~—1)+$-1]} ‘-12 (16)
P

where ~x and +Ydenote b#/i3X and b#/dY, respectively. If,

for the moment, pJp and *x’$# “— 1 are considered to be

dependent and independent variables, respectively, a
Maclaurin expansion in the neighborhood of the undisturbed

+x’+ +Y2stream, where ~ –1=0 and~=l, yields

(~=l+; (+1) $+– 1
P )

+; (A’– 1)’ [(7+4)+(7+1) (/J’-l):

&~osl_q~G

( )#x’-tfY’_l ‘+ . . .

(17)

where pz
li~’

‘&z and ~2—1=—1—Ml’ The form of this

development has been chosen to be consistent with the
Ackeret iteration process, which is essentially an iteration
around an undisturbed stream of zero incidence. Corres-
ponding to equation (3),

$=– ~+!h+#’2+ . . . (18)

w-here #=+1is regarded as small compared with #= and the
derivatives have a similar relationship. When this ex-
pression for # is substituted into equation ●(17) and t~~ is
noted to be of the same order as +Hz or #, Y*,then inclusive
of the second power in the derivatives,

+; (/.?-1)’[(7+4)+(7+1)(/.62–1)]*+2+ . .. (19)

When this expression for ~/P is ,abstituted into the basic
differential equation (9) and terms of equal order of magnitude
in the derivatives of& are equated, the following differential
equations for #l and #Zare obtained:

$lxx+m YY= o (20)
and

*2XX+P’#2Y2-=(lJ2–
{

1) y !&x+2 ~ #lxY
.

+/.42[3+(’Y+ML’- 1)1*5 !hYY
I

(21)

These differential equations are most easily solved by first
applying the afie transformation

I/=; Y=l/i=Tp y t

Equation (2o) then becomes a Laplace equation

vhzz+kw=o

and equation (21) becomes a Poieson equation

For ‘purposes of calculation a new stream function X*
be conveniently introduced, where

*=#u**

From equations (22) it can be seen that

(22)

(23)

(24)

may

(25)

#fx=4fz=Pu’4*.
and

*Y=; +,= U+*V

so that the undisturbed flows, at zero anglss of incidence,
in the physical and ffiely distorted planes are identical;
that is, (4P)1= (?Xj*.)1. WWh the introduction of the
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stream function #*, equations (23) and (24) become

+*1. Z+! J*I,U=O (26)
and

#*2zz+4J*2w=(P*– 1){**1,+*1..+24*14*1Z,

+[3+(7+1)(P2–I)I!L*lAJ*l,,]

or, with the use of equation (26),

#*2z.+#*2uu= (P2–1){ –[2+(7+ l)(P2–l)l#*I,4*lzz

+2#*1.1J*l=v} -“ (27)

Equations (26) and (27) show that, in order to calculate
the various approximations, the incompressible flow past
the distorted profile in the W-plane must be known. Thus,
if a profile is given in the physical XY-plane, it w-illbe neces-
sary to find the conformal transformation to a circle of the
distorted profile in the zy-phme for each value of the stream
Mach number, since the dine distortion of a profile depends
on the stream Mach number, as shown by equation (22)’.
In general, then, the problem to be solved is the flow past
an arbitrary profile in. tho ffiely distorted xy-plane. This
procedure in general mvolvea the laborious calculations of
the coefficients of ccmformal transformations to a circ~efor a
number of values of the stream h4ach number in such a
way that the distorted profiles in the W-plane correspond
to the given profile in the physical XlT-plane, In the case
of an ellipse,however, the distorted profile is again an ellipse,
and it is therefore a simple matter to transfer the results
obtained in the xy-plane to the A’Y-plane of the original
elliptic profile. In the present paper the elliptic profile is
so orientod that its major axis lies along the X-axis. The
relation between the profles in the two planes is then given
by

a=a’

b=; b’

ti=C’2+~ b’z

l—A b,R=R’+x

1(28)

tan a=: tan a’ (or, to the first order, a = ~ a’)
I

where

R=; (a+b)
.

a semimajor axis of ellipse in affincly distorted plane
b semiminor axis of ellipso in affinely distorted plane
c semifocal distance of ellipse in affinely distorted plane
a angle of incidence of ellipse in affinoly distorted plane

and the prime indicatw corresponding values in the physical
plane.

The solution of equation (26) is in generrd the imaginary
part of a.n analytic function w,(z) where Z=X + iy. (The
asterisk has been dropped.) 11 is easy then to verify that

. *1==*(w-ml;)

h=; (m+=];)

;-
41=”=; (%,+%)

1
~w=’+lly=~ (Whrmlz)

where a bar indicates conjugate-complex qunntitics. Tt]wc-
fore,

2#1#1ZZ=I. P. (WI,ZWl,+WYIz~~,;)= (WIS+7J,;)I. 1’. Wl,,

and

2J1**1ZV=I.P. (wlzzw~,—wl,gw~;)= —i(w,, —m*;)R. P. WI,,

Equation (27) can then be written as

3**2
bz3z– [— ——; (&-1) I. P. ; CT(W9.+ (u+4)(w1,W, 1 (29)

where u=(7+ I)(p*—l).

Consider now a circle of radius R, with itscenter at [ho
origin of the z~-plane, into whirh the distorhxl profi]o in
the z-plane is mapped by means of a conformal transforma-
tion. Any point on the circle can be expressed in the form

2~=Xf-I-iyp=R (COS~—i sin [)= Re-i~

so that the point describes the circle in the clockwise sense
and leaves the region outside tho circle on the hf t. If now
~=f +iq, the transformation .—

2t=R@r (30).,
yields a circle of radius 1? when q= O and the infil~itcregion
of tho 2’-plane when T=-!- co. Equation (30) tianbe looked
upon as the transformation from Cartesian coordinates z’, y’
to polar coordinates Req,— ~. The conformal transformation
of an arbitrary profile in the z-plane into a circle of radius R
in the z’-plane, with center at the origin, can therefore bc
written ,

z=j(e~q (31)

wherey= O yields the parametric equations of the profile in
the z-plane.

When t and ~ are introducecl as imlcp&lent wwiablcs,
equation (29) becomes

&#;
a[ty [
— = –:(/J2— 1)1.P. ~ @l,2)$+ (f7+4)(wlz)f=L?1(32)

The g~neral solution of equation (32) or of equation (29)
is obtained directly and is

. ?. .
$2=+’ 1–1) I.P. ; &w,:+ (u+4) m,w,.+r(~) I (33)

where F&) is an arbitrary function
ing to the boundary conditions at
itiity.

J

tO b Llctem.imxfaccoy-l-
tho solid smfacc and at
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Consider now an ellipse in the a5ne z-plane with semi-
major axis a and semiminor axis b. The undisturbed stream
at imflnitymakw a smalI angle a with the negative direction
of the z-axis, and the circulation is determined according to
the Kutt-a condition that the downstream end of the major
axis is a stagnation point. In accordance with the Ackeret
process,

+=–?/+#1+#2+ . . . (34)
so that the stream function is e.xpa.ndedaround an undis-
turbed stream at zero incidence. Since the angle of attack
has been assumed small, powers of a higher than the first
are neglected. The boundary conditions are then, at the
surface- of the eIIipse, q= O, -

$1=?/

#,=o}
and, at infinity, q= w,

~=_
ax a

h~l_ ~
~–

w2_o
7ii–

9$=0

(351L)

(35b)

!3Tow,the transformation
e2Z=&?’+T

42 (36)

maps the region external to the ellipse in the z-plane into
the region external to a circle of radius R=% (a+b) with
center at the origin of the z’-p@e. The complex potential
for the flow considered is given by

(
R2e-ia

u)= — )~fek+~ – 2iR Silla log $ (37)

Yi’henthe variable ~is introduced by means of equation (3o),
equation (36) becomes

Z=c Cos (~+ih) (38a)

and equation (37) becomes

w= —2R cos (~—a) —2R~ sin a (38b)

where a= c cosh x and b=e sinh h. This expression for w “
includes the uniform undisturbed stream —z which must be
axtracted in order to obtain $1. Thus, for a small angle of
attack a,

Wl=c cos (~+iA)—2R cos ~—2R (sin ~+j-)a (39)

and

#,=1.P.w,

It can be easily veri6ed that this expression for *I satisfies the boundary conditions stated in equations (35) and also
that the downstream end of the major axis is a stagnation point.

Similarly, the most direct way to determine ~Z is to consider it to be the imaginary part of a nonanalytic function m
oft and ~. Thus, from equations (33), (38), and (39),

In order to satisfy the boundary condition ~S= O at the surface, ~= O, it is a simple matter to supply the functions
of f needed to make the coefficients of wI. and WI,2vanish for ~= O. For example, cos &–iL)=cos &–iA) for q=O.
Thus,

42= –~ (A?– 1) I. P. {~ ue[COS&–ih)–cos (f–h)]w?

+(a+4)c [Cos (f–A)–2 : CosF–2 : .(Sin ?+ T)–COS (f–ih)+!2 : cm r+2: a(sin t+t)] m.] (40)

In order to satisfy the boundary condition at irdinity and the condition that the downstream end of the major ati
be a stagnation point, the procedure, according to equations (7), (22), and (25), is as follows:

From equations (39) to (41) it then folIows that at infiqity
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“-O and u W2Hence, in order to satisfy the boundary conditions at infinity, u2=z– =-~=0, a term – +5 (#-l) (u+4)a sinl’,

the imaginary part of which vanishes for q= O, must be added & the expression for wZ. This addition to WSintroduces
a velocity at the downstream end of the major axis, given by

Again, in order to render (:=u, ~=0) a stagnation point, a term –~ 6 (~z– 1) (u+4) a~ satisfying the boundary concii-

tion? at the solid and at infinity must be added to the expression for w. Finally then

~,=1. P. %“

=–~ (p’– 1) I. P. {~ aC[COS(~–
[

Zl)—cos &—lI)] U42*+(U+4) c Cos (?—N-2 : Ws F

–2 ~ a (sin~+r)–cos (~–tl)+2 ~ cos f+2 ~ a (sin ~+{)] w1,+2b (u+4)(sin t+t) a
t

(42)

The complete expression for #, obtained from equations (34), (39), and (42), is then given by

i= –I. P.@ cos f+2Ra (sin t+t)+i(p’– l){~ac [COS(?–h) –COS (r–ih)]w,,’

+2b(a+4)a (sin ~+~))) (43)

dwl d~
where WIis obtained from equation (39) and W1*== ~z.

CALCULATION OF THE VELOCITY COFi’PONENTS u AND u

The,ficomponehtsu and v of the velocity of the compressible fluid p&.t tie actual profile in the physical Xl”-plnnc can be
put into the following convenient form by means of equations (7), (22), and (25):

(44)

where w is the .yrpresaionon the right-hand side of equation (43) with I. P, omitted. It follows that

(45)

where equations- (28) provide the correspondence between the distorted ellipse in the z-plane and the actual ellipse in the
Z-plane.

Equation (45) will now be utilized to calculate the lift on an elliptic cylinder in compressible flow. For this calculation
a control contour, which eventually is taken as infinitely large, will be applied in the usual manner. The elimination
of the variable t in equation (45) and in the equations needed for the calculation of. the Iift is in general impossible and in
the present example undesirable. Since the regions at infiity correspond in the z-. and z’-planes, it is convenient to choose
a large circle in the z’-phne as the control contour and to effect aII the calculations with $ and ~ as independent vari-
ables. The advantage gained by this procedure is a great reduction in labor, in that on a circle q is constant tind hence
only functions of the single variable z’ (= e-i~) appear. The first step is to obtain developments for pu/PlU and po/ptU in



EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VEIIOCIT131SON IXFTING FORCE 55 --

the neighborhood of irdhity and then to form the combination 5 (u–iv). This calctiation, according to equation (45),

yields the following result: .

1[ 1~~(u–iz?)=-(l+iw)+:[1++ (#’–l)(u+4) * (1–/.c)(l+P)+P) ;

‘l+ia[a-(*Y@’-’)l[()z2)(1+”)+”) a+*{[*+* (&)’(P’–u(i+4)] [(1–A) 2’2+ (1+/.c) ~

.
[( “) 11–la& (/.?-1)p d~++ +(1–P)2’’–(1+AL)+ + .. . (46)

where z’= e-it. Since #T–-~ $, and ~= –~ ~x, it folIows fi-om equations (17) and (46) that

a= 1

[ –1(2’-+)-=I’a[fi-(*)(’’-1)l+)’’-+)–: (+1) 1++(&-l) (u+4) Jb
P

– `'2-1)("+4)l[P2+$)+ia"'(2''-+)l-ia*('2-') (2'4-+)l+--- ’47)
b’

()+[&b+i a+b

CALCULATION OF THE LIFT

In a compressible flow as in an incompressible flow, the lift is given by (reference 8)

L,=pl Ur’c (48)

where I’e is the circulation round the profile and where, by debit.ion,

!$ fr.= (UdX+odY)=R. P. (u–io)dz (49)

NOW, from equation (22),
x=x

I’=py

Hence

l—p =z=lpz+T

Since Z=C cos ~+ih),

For the evaluation of the line integd for 17., the control contour is a large circle iR the z’-plane. Therefore, ~ is a

. dz’
constant and dl=fi=~ ~; hence,

‘Z=-% [(1+”)(*-2’)+(1-’)($-*)I$ (50)

where z’=e-’f. The desired expression for u–iq obtained from equations (46) and (47), is
.

; (u—io)=—l—ipa+t;
[

][(1-N-(1+,) ++(,U’-l] (z’-;)]+ . . . (51j1++ (P’– 1)(u+4)&

Equations (49) to (51), with only terms containing the factor old/z’ contributing to the line integral for I’., then yield the
following result:

J ,..,
[

re=bRU@a, l+: (#–l) (zT+4)~‘.!* 1 (52)
... .
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If a, b, R, and a are replaced by a’, b’, R’, and a’ according
to the correspondence equations (28), then for the actual
elliptic cylinder in the physical flow plane Z,

[
rC=4~R’U~’P+2~Udb’ (1–P)+* (P’–1)(a+4)1

Since the circulation in the incompressible case, Ml= O or
#=1, is

r~=4TR’ Ua’

the ratio 1’,/1’<is given by

r.
b’ [(1–P)+: ($-1) (U+4)]~i=P+~

With R’=: (a’+ b’) and u=(7+ 1) (p’– 1),

L, r,zi=m=p+ *[K (H+; (7+ O (H)’] (53)

where t’ is the thickness coefficient b’/a’ of the elliptic
cylinder in the physical flow plane. This equation represents
a flret-step improvement of the Prandtl-Glauert approxima-
tion and reducee to that result when i!’aO.

Although equation (53) has been derived spccitlcally for an
elliptic cylinder, it will be shown that the result can be ex-
tended to a slenderarbitrary syqrnetrical profile. Hantzsche
and Wendt (reference 9) derived a similar relation for the
c.aee.of a symmetrical Joukowski profile with a sharp trail-
ing edge. The result of Hantzsche and Wendt may be
writtdn aa

Flote that the function of P contained between the bracketa
is the same in oquatiom (53) and (54). This coincidence

suggests a correspondence between the factors —l!t’ ‘d &
A correspondence is obtained in thdd.lowing manner: It

is well known that by means of the mapping function

Z=z’+$

the circle of radius c2/4, with its center at the origin of :the
Z’-plane, is mapped into the line segment extending from

Z=— Ch Z=C, and the circle of radius ~ (1+~), with its

center at Z’= e ~j is mapped into a symmetrical Joukowski

profile with sharp trailing edge in the Z’-plane. INOW

t’
+

I+F=T
(55)

or, witk R=; (1+6),

Thus, to the first power il~~,~= ~~ and the correspond-

ence between equations (53) and (54) is csttiblishmf.
In t,hccase of an arbitrary symmetrical profile, the Tlmo-

dorsen method (see reference 10) is particulmly well suited

to obtain an expression corresponding b &. An esscntinl

feature of the potential theory of arbitrary wing profiles de-
veloped by Theodorsen is a rapidly convergent proccduro for
obtaining the conformal transformation of the profile to a
circle, also the radius R of the circle. The coefficient of tho

$-term of this conforrnal transformation, denoted by cz/4,

and the radius R of the conformnl circle define an cllipso

Then, from equation (55),

&’=;(l–e-a)
and, therefore, for an arbitrary symmetrical profile, the for-
mula that corresponds to equation (53) may be written

Le )7;-
~=fi=#+; (1–e-”)[ 1

# (k—1)++ (7+1)(/J2-02 (56).

Table I shdws values of the ratio LJL,, calculated by
means of equation (53), for various values of the thickness
coefficient t’ and the stream lMach number Ml (with y= 1.4
for air) and figure 1 shows the corresponding graphs with Ml
as abscissa and LtJL{ “asordinate.

LANGLEY YIEMORIAL AERONAUTICAL LABORATORY,

~ATIOXAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, I’A,,f14ay16,1946.
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