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ON A NEW METHOD FOR CALCULATING THE POTENTIAL FLOW PAST A
BODY OF REVOLUTION

By CarL Kaprran

SUMMARY

A new method is presented for obtaining the velocity potential
of the flow about a solid of revolution moving uniformly in the
direction of s axis of symmetry in a flurd otherwise at rest.
This method is based essentially on the fact that the form of the
differential equation for the velocity potential is invariant with
regard to conformal trangformations in a meridian plane. By
means of the conformal transformation of the meridian profile
into a circle a system of orthogonal curvilinear coordinates is
obtained, the main feature of which 18 that one of the coordinate
lines is the meridian profile itself. The use of this type of
coordinate system yields a simple expression of the boundary
condition at the surface of the solid and leads to a rational
process of iteration for the solution of the differential equation
Jor the velocity potential. It is shown that the velocity potential
for an arbitrary body of revolution may be expressed in terms
of universal functions which, although not normal are obtain-
able by means of simple quadratures.

The general results are applied to a body of revolution ob-
tained by revolving a symmetrical Joukowski profile about its
azis of symmelry. A numerical example Turther serves to
llustrate the theory.

INTRODUCTION

The simplest case of a three-dimensional fluid motion
occurs when a body of revolution moves with a constant
velocity in the direction of its axis of symmetry. In this
case, the.motion is the same in any plane passing through
the axis of symmetry and, in this respect, presents some
analogy with a two-dimensional motion. Thus, ‘a stream
function is defined by means of the equation of continuity;
and the condition for irrotational motion yields a velocity
potential. The stream function and the velocity potential,
however, are not interchangeable in three-dimensional flows
in the same way as are the corresponding quantities in two-
dimensional irrotational motions. The reason for this
difference is that, although the differential equation for
the velocity potential is Laplace’s equation, the equation
for the stream function is not Laplace’s and therefore the
two functions cannot be combined to give an analytic
function of a single complex variable. It follows that the
elegant and powerful methods of the complex wvariable
are not obviously applicable and the calculation of the
potential flow past a body of revolution has, of necessity,
developed along other lines.

The method of calculating the flow past a body of revolu-
tion most often referred to was suggested by Rankine and
developed by von Kérmén (reference 1) and others. For
axial flow, the axis of the body is covered by a continuous
distribution of sources and sinks in such a way that the closed
stream surface found by the superposition of the flow in-
duced by the sources and sinks on the parallel flow coincides
with the surface of the solid. For transverse flow, the axis
of the body is covered by a continuous distribution of dou-
blets. Thesuperposition of the flow due to the doublets on the
parallel flow then yields the surface of the solid as a stream
surface. Both problems lead to integral equations that von
Kérmén solved by an approximate method. As von Kér-
mén pointed out, however, the exact replacement of the body
by a distribution of singularities along the axis of symmetry
is possible only when the analytical continuation of the po-
tential function, free from singularities in the space outside
the body, can be extended to the axis of symmetry without
encountering singular points. (See reference 1, p. 27.) In-
asmuch as the question of when this analytical continuation
is or is not possible has never been answered, numerical
calculations may lead to incorrect results, particularly in

‘the case of a body with & rather blunt nose.

In reference 2 an attempt was made to calculate the po-
tential flow past a body of revolution according to the
methods of potential theory. In that paper, Laplace’s equa-
tion for the velocity potential is expressed in terms of elliptic-
cylindrical coordinates and is solved in conjunction with
the appropriate boundary conditions for axial and trans-
verse flows. In the case of an ellipsoid or a hyperboloid of
revolution the solution is obtained in a closed form, both
shapes being members of the family of orthogonal coordi-
nate surfaces belonging to a system of elliptic-cylindrical
coordinates. For any other solid of revolution, however,
the method leads to two sets of linear equations, each set
having an infinite number of equations and an infinite num-
ber of unknown coefficients for the determination of the
velocity potentials for the axial and transverse flows.

In the present paper, & new method is presented for cal-
culating the potential flow past an arbitrary body of revolu-
tion. Only the case of axial flow is discussed but the method
is equally applicable to the case of transverse flow. The
method is based on the discovery that, by the proper choice
of the system of coordinates to be used for a given body
of revolution, the solution of the potential-flow problem can
be obtained by means of quadratures. Coordinate systems
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of this nature already exist in the literature. For example,
if the solid is an ellipsoid or a hyperboloid of revolution, the
coordinate system used is an elliptic-cylindrical one. These
coordinate systems possess in common the property that one
of their coordinate surfaces is the boundary of the solid
itself. It will be shown in this paper that, by means of the
conformal transformation of the meridian profile into a
circle, a system of orthogonal curvilinear coordinates can be
defined such that one of the coordinate lines is the meridian
profile of the solid of revolution. Furthermore, it will be
shown that, by the use of this type of coordinate system,
the potential-flow problem for an arbitrary body of revolu-
tion can be solved by means of elementary integrations.

In comparison of the method of this paper with the
method of reference 2 it is to be recalled that in reference 2
Laplace’s equation for the velocity potential was expressed
in elliptic-cylindrical coordinates. The general solution in-
volves normal functions: namely, Legendre functions of the
first and second kinds. The boundary condition, however,
for. an arbitrary body of revolution involves the two inde-
pendent variables of the problem and yields, as mentioned
before, an infinite set of linear equations with an infinite
number of unknown coefficients. On the other hand, the
method of this paper utilizes a different coordinate system
for each body of revolution. The main feature of these

conformal orthogonal curvilinear coordinates is that one of”

the coordinate lines coincides with the meridian profile of
the body of revolution. This fact leads to an expression
of the boundary condition at the surface involving only one
independent variable. Although the general solution of the
differential equation for the velocity potential has not been
obtained in terms of normal functions, a method of iteration
has been devised that involves only elementary integrations.
This solution, satisfying the boundary conditions, can then
be expressed in terms of universal functions. Although
these functions are not normal, they need be determined
but once.

MATHEMATICAL DEVELOPMENTS

EQUATION FOR THE VELOCITY POTENTIAL

The axis of symmetry of the body is denoted by z and the
position of a point in & meridian plane is fixed by the Car-
tesian coordinates (z, &) (fig. 1). Then if ¢. and ¢, are,
Y

Q —— — i — ]

X

zZ
F1aurE 1.—The meridian plane X0w

respectively, the components of the fluid velocity in the
directions of the x and = axes, the cquation of continuity is

obtained by equating to zero the flow out of the annular
space obtained by revolving & small rectangle dz dw around
the axis of symmetry. Thus, the total flow outward in the

direction of the z axis is %(2mq,dm)dx and in the direction
of the = axis is %(2mqma’a:)dw. The equation of continuity

is therefore

2; d '
55 (#0s) + 35 (99a) =0 1
Since the flow is symmetrlcal about the z axis, the vor-
ticity is
O __0g:
oz O

and if, further, the motion is irrotational, then

O 0¢:_
oz oo
A velocity potential ¢ can therefore be so defined that
fe]
qz=‘“£
5 @)
o= —b_g

and the equation -of continuity (1) becomes

D[/ 28\, D [ ¢\ _
E(“’E)*’BE (G*a—m 0 ©)
Consider now the conjugate complex variables z=z--ie
and Z=z—iw. Then, symbolically,

02,0 .0
2z oz ‘ow
0 _ 0 ,.
2% %o

and it can be easily verified that

% (5555 (v58) PR3 (=5

Thus, the vanishing of the real part of by (uf%) is equivalent

to equation (3).
Consider further the conformal transformation
z=f(t) where t=¢+in
Then _

0¢ 09\ __ ¢ o df 0¢
aa;( >+bw< =EPizw\zn) @
Smec 2, z, or ¢, { may be looked upon as mdependonb

variables, it follows that the right-hand side of equation (4) is

d¢ dt 0 qS
RP‘jd_d’a: “oF
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Now, the product %‘; %:S is o real quantity. The vanishing of

the real part of a%_(w—%%) is therefore equivalent to equation (3).

Hence,

A ACIE NG

where @ is now a function of (£, ) obtained from the con-
formal transformation z=f().!

Equation (5) rather than equation (3) will be considered
to be the fundamental differential equation governing axi-
gsymmetrical motions of a perfect incompressible fluid.
It is more general than equation (3) in the sense that the
independent variables (¢, 5) denote any set of orthogonal
curvilinear coordinates obtained by means of a conformal
transformation z=f(). In addition, its form is invariant
with regard to conformal transformations and, in this sense,
does not complicate the original equation (3). In the follow-
ing section it will be shown that, by means of the conformal
transformation of the meridian profile of an arbitrary body
of revolution into a circle, an orthogonal curvilinear system
of coordinates (¢, n) can be so defined that the coordinate
line =0 is the meridian profile itsclf. In subsequent sec-
tions it will be seen that the use of this type of coordinate
system leads to a simple expression of the boundary condi-
tion and, consequently, to an iteration process for the solu-
tion of equation (5) for an arbitrary body of revolution.

CONFORMAL TRANSFORMATION AND ORTHOGONAL COOBﬁmATES

It is well known that a unique conformal transformation
exists which maps the region external to a given boundary
in the z plane into the region external to a circle in the Z
plane with its center at the origin, such that the regions at
infinity of the two planes correspond. The function repre-
senting this conformal transformation can be developed in
the region external to the circle in a convergent series of the

type .
2= Z+01+ +Z’+Z"+ (6)

where the coefﬁments ¢, a4y, 4g, a3, . . . 8re, in general, com-
plex quantities. In this paper, the meridian profile is sym-
metrical with respect to the axis of revolution and these
cocflicients, therefore, are all real. The constants a,, as,

1 It has been polnted out by Dr. Theodore Theodorsen that equation (5) can be obtained

directly, as follows:
Tho veetor form of equation (3) in a meridian plane I3 simply

dlv (o grad #)=0
If a set of orthogonal curvilinear coordinates £ and n Is Introduced, the expression for

dlv (v grad ¢) becomes
A CAIEAC N

wxhere the eloments of length along the £&-variable and y-variable eoordinate lines are, respec-
tively, &1 dt and &z dy.

If, howover, the transformation from the rectangular Cartesian coordinates (r,o) to the
orthogonal curvilinear coordinates (¢,4) s also conformal, then By=hs; becaus for a conformal
transformation the magnification at any point in the plane is independent of the direction
through the point. Thus, with A;=A,, tho foregolng expression placed equal to zero yields
equation (b).

@3, . . . depend only on the shape of the meridian profile in
the z plane.

The method of Theodorsen and Garrick, described in
reference 3, is particularly well adapted for the purpose of
determining transformation (6). It is shown in reference 3
that, with the proper choice of axes and origin, the Joukowski
transformation

. 2
e=2'+7 @
maps a closed boundary in the z plane into a nearly circular
curve in the Z’ plane. The mapping of this nearly circular
boundary, with its center at the origin of the Z plane, is
then completed by means of the transformation

Z!'=Zel® 8)
where

1&O=3 7

On elimination of Z’ between equatlons (7) and (8), equa-
tion (6) follows, where

o, 1
n=ct50+a?

— 1 3 2
aq_c,—l-c,c,—l—gcl —i 0

) 1 1 1 1
G=cs+cics+ 501202 ‘|‘§(‘z~2 + 2—461‘ -I-:.Z-a’clz— alcy

The values for ¢, and therefore for a, can actually be
determined as the Fourier coefficients of a certain ¥(¢)
curve (reference 3). :

If the radius of the circle in the Z plane is denoted by
R, the coordinates of any point on this circle can be
expressed as

X=R cos ¢
Y=—Rsin ¢

where, as £ increases from 0 to 2#, the point describes the
circle in a clockwise sense, thus leaving the external region
to the left of the direction in which the boundary is trav-
ersed. Any point of the circle can also be expressed as

Z= X4 i¥—Re"
If ¢—£-+in, the transformation
Z=Re 5

yields the circle of radius B for »=0 and, furthermore,
n= o corresponds to the region at infinity of the Z plane.
Upon substitution of this expression for Z in equation (6),
it follows that

.z=Re’e“f+cl-I—%e"’e‘f+%,e""e"5+%e"3’ve‘”f+ . (9
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When this equation is separated into its real and imaginary
parts, it is seen that

r=c;+Re? cos £+%e"' €os E+§e‘2" cos 2¢
Ay _
+Fe cos 3E+ ...

. 10)
w=—Re* sin E+%‘e“' sin E-!—l—;%e"' sin 2¢

+78e™ sin 3¢+
where the quantities ¢;, a;, @3, ds, . . . are determined
according to the method of reference 3.

Rather than as a conformal transformation of a plane z
into a plane Z, equations (10) are to be looked upon as the
cquations of transformation’ from the rectangular Cartesian
coordinates (x, @) into the orthogonal curvilinear coordinates
(¢, 7). TFurthermore, the coordinate line =0 is the profile
itself; that is, when =0, equations (10) yield the para-
metric equations of the profile in the plane z. It will be
seen in the following discussion that the use of this type of
coordinate system leads to a simple form for the boundary
condition at the solid surface.

BOUNDARY CONDITIONS

If a body of revolution moves with a velocity U in the
direction of its axis of symmetry, the normal velocities of the
body and the fluid in contact with it are the same. Thus,
at the surface of the moving body, the boundary condition
expressed in the conformal orthogonal coordinates (&, 17) is

simply 5 o
(507

since the coordinate lines along which 7 varies and ' Temains °

constant are normal to the boundary =0. According to
the first of equations (10) this boundary condition can be
written as

(%) _ ( _a
(an q_o—U Recost Rcoss

—‘-‘ZR%’ cos 2t — 31‘;?; cos 3¢— . >

(11)
Furthermore, as the fluid at infinity, originally at rest,
remains undisturbed by the motion of the body, the bound-
ary condition there is, simply,

(59)...
(an e

1t is remarked that the simple form of the boundary con-
dition (11) has been attained on account of the introduction
of conformal orthogonal coordinates (£, 4) so defined that
one of the coordinate lines =0 is the meridian profile itself.
It will be seen in the following discussion that this choice of

(12)
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coordinate system leads to a process of iteration for the solu-
tion of the fundamental differential equation (5) involving
only simple quadratures.
SOLUTION OF THE FUNDAMENTAL DIFFERENTIAL EQUATION
BY ITERATION
If the right-hand side of equation (10) for & is substituted
into equation (5), it follows that

(RB”— Re"l) sin ¢ aﬁ{ az::

+(Rev——e-v> cos EE+(R¢:+ ‘ —v> sin z%‘%

. 0
(13)

With regard to an iteration method it is desirable that the
initial step in the process be obtained in a closed form.
Thus, equation (13) has been so arranged that the solution
of the left-hand side placed equal to zero can be obtained in
a closed form. This initial solution can then be utilized as
the starting point of an iteration process. Before a detailed
description of the iteration method is given, howaever, it is
first necessary to introduce several new parameters. Thus,
the coefficient a, is replaced by a%% and the radius B by ae~
where @, as in equation (7), serves merely to preserve dimen-
sions. Then equation (13) can be written as follows:

98) 1 sinh (5-+a—B) cos e%—"g

ﬂ

sinh (1-+a—) sin §( S5+ 25

o¢

+cosh (ﬂ+a—ﬂ) sin 017 Zb e~ D) (rta—p)

X[ sin (r- i G+ 58) + (1) cos (a4 10622
—(n+1) sin (n+ 1).90—”] (14)
where b.=2(%.rf;,g, a - nondimensional quantity, and the

boundary condition (11) becomes
— b¢) mﬂ—2aUe‘3 [sinh (a—pB) cos £
L)

—2b,e72B) cog 28—3be~ P cos 3E— . .. ] (15)

The method of solving equation (14) is based upon the
following considerations:

It is assumed that the velocity potential ¢ can be developed
in a series of terms each of which is homogencous with
respect to the indices of the coefficients b,; that is,

¢=E¢n

n=0

(16)

where, for example,

¢o involves none of the coefficients 5,

¢: contains the coefficient b; as a factor

¢ 1s the sum of two terms having, respectively, b, and by
as factors

¢s is the sum of three terms having, respectively, b, b,b,,
and b; as factors and so on for the higher-order terms
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Equation (16) for ¢ is now substituted into equation (14)
and the terms involving the coefficients b, and their products
to the same degree in the indices are equated. The same
process is applied to the boundary condition (15). In this
manner, equation (14) is replaced by a set of partial differ-
ential equations which, in conjunction with the boundary
conditions, can be solved rigorously for ¢g, ¢1, ¢2, . . . When
the operations just described are performed, the differential
equations with the accompanying boundary conditions for
the first three functions ¢y, ¢;, and ¢; are as follows:

sinh (3+a—g) sin E( oF w)“‘smb (n+a—p) cos E%‘i"
+eosh (1-+a—§) sin § 32 =0 7)
with the boundary condition at the surface

—<%§°>v_o=2aUe3 sinh (a—§B) cos ¢

(38)...=0 =t (5)...

sinh (r-+a— ﬁ)sms(%g;‘ 2

and at infinity

+sinh (n4-a—pg) cos E%?+cosh (74 a—B) sin gaa—n

bla—ztrl-a—ﬂ)l:sm 2t ( DE’ bzd;"
+2 cos 25—5—2sin2£s17 (18)
with the boundary condition at the surface

(%ﬁ> =4aUePbe™3«P cos 2¢
N/ x=0

and at infinity
a¢1> 3451)
= =
sinh (44 a—8) sin & (b ¢ aa—:ffz

+-sinh (n+a B) OOSE St %t cosh (+a—p8) mnE

a’tfn

ble"(v*a“ﬁ’l:sin 2 (38+

0% ¢1>—I—2 cos 25 g —32 gin 2¢ a¢‘:|

- b’qbo ¢o> gin 3¢ O
+bye 3t ‘”I:Sln 3t (?ET 7 )13 cos 3E 3.: 355

(19)
with the boundary condition at the surface

(%) =6aUePbe—3 P cos 3¢
N /=0

and at infinity

(32)... a (32)..-

DETERMINATION OF ¢

In order to solve equation (17) for ¢, it is convenient to
introduece a new set of independent variables u and A, where

p=cos £ and A=cosh (p4-a—p)
By use of the symbolic expressions
o)

s by,
o .
p— 008 Ea—bﬂ—l—m’ E%

and % (20)

S=sinh (+a— 1k

2
b%;-—cosh (n+a—B) m-{-smh" (n-l-a—-ﬁ)a)\z

it follows that equation (17) can be written as
[¢] o o) 0
sla-mE]-gla-w]=0 e

If asolution of theform do=F(p) G(\)is assumed, equation (21)

becomes
H[e-nEl4d[en 8]

Since the left-hand side of this equation contains g but not \
and the right-hand side contains A but not u, F(x) and G(\)
must be such that each side is a constant. If, furthermore,
the constant is chos:n to be —n(n4-1), where 7 is a positive
integer, then

4 a—wEE narnr=o

H 0—0% +aa+na=o

Each of these equations is a Legendre differential equation
and, being of the second order, possesses two independent
particular solutions: namely, the Legendre functions of the
first and second kinds, P, and @,, respectively. According
to the boundary condition at the surface, the form to be
taken for F(u) is Pi(u). Correspondingly, according to
the boundary condition at infinity, the form to be taken for
G () is @ (0), since the @, () and their derivatives vanish
for A= ». It follows that the solution of equation (21) is

$o=A1P1(e) 1 (M) (23)
The arbitrary constant 4, is determined by the boundary
condition at the surface: namely,

(b)\ . =2aUefu

(22)
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Thus, )
2aUef

4==9709

where
00040
=Xg
and
No=cosh (a—pB)

It will be necessary for the determination of ¢; and ¢; to
have the first few orders of P,(z) and @,(\) stated explicitly.
The following are expressions for the first four harmonics:

Po(#)=1
Py(p)=p=cos {

Py (p) =%(3#2—1) =;?;- cos 25—|—i

© Py(w =%(5#3—3#) =-g— cos 3£+§ cos £

g M1 (24)°
QO()‘)_ _1 )
QN =grlog 21 —1
1 A1 3
Q2()‘)="‘_1;(3)‘2 1)1 og )\ 1 E?
A1 6

@\ ="‘(5>\3 —3N\) log )\——1__)\2+_
DETERMINATION OF &

When the independent variables u and ) are introduced and
equations (21) and (23) are used, it follows that equation (18)
for ¢, can be written as

2l a-w3t]-s a5 |-

_bel(—}\—‘lr;\i—z“){[le()\) ()‘+2'\‘ N— )Ql ()‘)]Po(#)
—2[Q: (x)+(x+24x2—1)Ql'(x)]Pg(p)} (25)
The right-hand side of this equation requires that
e1=Fo(N) Po(i) +F2(N) Pe(n) _ (26)

If this expression for ¢, is substituted into equation (25) and
the coefficients of Py(r) and Ps(u) are equated on both sides
of the resulting equation, it follows that

l: 1— )‘,)dFo()\)

'—blAlg—__— ')[(H-2w/>\’ 1)@ (>~) 2Q1(>\)] @7

N—
and
j‘l—[(l—x*)dﬁzl’)(\)‘)]+6Fa(k)=
—blAl(*‘,l’,__l) [O+H2V¥=1) @' M) +QM]  28)

With the right-hand sides taken equal to zero, these two
equations reduce, respectively, to Legendre’s equation for
the zero- and second-order functions. Then, according to
the theory of linear differential equations of the second order,
the solutions of equations (27) and (28) are:

R =B — [ 321 [ BtV (20)

and
B =B~ 6N—1) [ mepyiasa—y | BN —DRM
(30)

where By(\) and R,()\) are, respectively, the right-hand sides .
of equations (27) and (28). It is noted that each of these
solutions conteins only one arbitrary constant, By and Bj,
because the other two independent solutions Py(\) and
P,(M\), respectively, of the homogeneous forms of equations(27)
and (28) do not satisfy the boundary condition at in-
finity and therefore the arbitrary constants associated with
them are taken equal to zero.

The boundary conditions for ¢; lead to the following
boundary conditions for Fy(A) and F>(N):

dF, 4 (No—VAF=1)*
=—ZhalUerr—X 0 "/
an x- 3 1
A= V2 31)
dF,
Fo)rao= d)\o>x- = =0
and . )
dF, Mo— VA —1)?
b alUe?
ax /a- 3 1 T
e M 32)
F. .
(Fi)hnm= %_X_Z )‘.:.m=0

The integrations required in equations (29) and (30) are
straightforward and need not be performed here. Further-
more, by use of the well-known recurrence formulas for the
Legendre functions, it can be shown that

Fi =202 20,00+ @0 [+ v=1] & - |

(33)
and
Fa() =B2Q2()\)—%blAl{%[QQo()\)'FQz()\):I
+ 1] @ )+20) ) (34)

where, by meaus of the boundary conditions, equations (31)
and (32),

B,=0
9 (35)
Bi= 6,417 5[0 00+ 310 00

It may be easily verified that these expressions for Fo ()
and F; (\) satisfy the condition that they and their deriva-
tives vanish for A= .
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DETERMINATION OF d)’

When the variables p and \ are introduced into equations (21) and (25), it follows that equation (19) for ¢. can be

written as

=] a-m3e

T o L

45, A AN—1) 1)[8 (1= (42— 1) O+3 1) a‘ﬂﬂbz(*—*’ 1)4[(1_#,)% W2V 1)3‘{°:| 36)

T

If the expressions for ¢; and ¢; given, respectively, by equations (23) and (26) are substituted in equation (36), it

follows that:

X [(1—xf)§—i’]—% [ =032 |-R0 P+ RN P 57)

o1 [26210) 3(MF2VR—1)QY (x)]
=)

2Ql(x)+(x+3~/x‘*T1)Ql'(x)]

where
R(=—2b2= Y N,;/Z‘ D000~ 0t 2y | B0+ 2 m] ;
(A—+2—=1)3 _7 — 4, (x
—‘gbzAl—ﬁ— 86:(N) 2(>\+31,/)\ 1)@/ ()‘):I blAl
and
Ry =gp, E= L) \,1/?—:1> 2T, (N + (A2 N=1) By (x>]+ 8pad, A A
(A\—

+ b2A1

The right-hand side of equation (37) requires that
¢a=F1(N) Py (1) + F3(N) Py (1) (38)

When this expression for ¢, is substituted into equation (37)
and the coefficients of P, (z) and P; (\) are equated on both
sides of the resulting equation, the following equations for
F, (\) and F; (\) are obtained:

[ a—0EBN om0y =ro (39)
and ’
w00 orm=Rm @0

It is evident that the homogeneous forms of these equations
are, respectively, Legendre’s equations for the first- and
third-order functions. According, then, to the theory of
linear differential equations of the second order, the solutions
of equations (39) and (40) are

FON=B@M— [ g [B0 @

2 000+ k2D |

and

Fs(N=B:Qs(»)

—(53—3N) f - 1)(&3 57 f BN—3NBMdN (42)

The arbitrary constants B, and B, are determined by the
boundary condition at the surface of the moving body.
Thus, the boundary condition for ¢, leads to the following
conditions for F; () and F; (A):

dF\ 18 (—AF—1)?
£20) NN L Lo
: (43).
Frme= ‘% | =0
48 (o—A/ N —1))
( )R-M 5 F haale o —1
- (44)
(Fa))_m= 'T; )‘mm=0

Then, if the integrations required in equations (41) and (42) are made and the recurrence formulas for the Legendre

functlons are used, it can be shown that

Fi) =B 3 5.5 2 000+ 00+ YR—T10r 09 - @u09]]

_%blel {—4:

~50 G0 —5 Q) +2 @ )+ VFTI00) +4Q() —50/ ]

—$hafi+lam+EQm—yF=T [Q2<x>+Qom— | )
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and

RN=B:@N) ~§B: [ 600 +3 @)+ /V=T[0/ () +4@:0)])

_§b12A1 {_

1-20.0)+55 GO +5 &/ O+ V=1 —6QM+AN - Z '™ |}

~Shd E+ 20— @M+ WI[Fam-Sam+ero |} (46)

where

B0/ 00 =555, (30.00+ 00— T [50.00+0/ 00— 2107 0]

—30tA(30:00 -+ 0 00 —307 00 —3 VAT 3000 +07 00— L 1@ Ow)E))

b~ 30,00+ 0/ o~ /W1 0/

and

B () =5 hiB2 3000+ @1 O0)— =

~3Q 007 )) (@)

Lam-Le00+e00 ]

50 [ Q0D+ 0/ 00+50" 00— —35 00+ 005009 ||
bt [ Q00+ @ (00 —80:000) —75= 104 () 2] (48)

It may be easily verified that the expressions for Fi(\)
and F; (A) and their derivatives vanish for A= .

It is clear that the iteration can be continued to obtain
further members of the sequence of ¢,. The order n to
which the process must be carried depends on the magnitude
of the coefficients b, of the conformal transformation. For
example, it may be that one of the higher coeflicients, say
bu, 18 significant. It is obvious, then, that the iteration must
be continued far enough to include at least the corresponding
term ¢,. Although the ¢,’s do not form a set of normal funec-
tions (obtained independently of one another), they are
nevertheless uniquely determined by means of simple quad-
ratures; that is, they constitute a set of universal functions in
the sense that the labor necessary for th#ir determination is
performed but once and need not be repeated for each, par-
ticular body of revolution.

VELOCITY AND PRESSURE

According to Bernoulli’s theorem,
—_ 2

L&=1_<%> (49)
lpUa

where ’

P  pressure anywhere in fluid

P pressure in region at infinity uodisturbed by motion of

solid

p  density of fluid
gr velocity of fluid relative to boundary of solid

AN

It is recalled that in this paper the expression for the
velocity potential ¢ has been derived by considering the
coordinate axes as rigidly attached to the body and there-
fore moving with a velocity U in the positive direction of
the z axis. The velocity vector g=-—grad ¢ represents the
velocity of the fluid relative to the undisturbed fluid at
infinity. The vector velocity 7, relative to the moving
axes, is therefore given by

Gr=q— U
or
qr=%(qz— 0) +3§Zw
where 7 and j are, respectively, unit vectors along the posi-
tive directions of the z and & axes. The magnitude of the
relative velocity is therefore obtained from

_Q: +_‘lw _QUQ:"I‘ U2 (50)

where

0 d

Slz=_'a_2 and qw=—a—$
It is recalled, however, that the velocity potential ¢ is
derived as a function of the independent variables ¢ and 7.
In order then to determine g, it is necessary to express the
velocity components g: and ¢s in terms of the quantities

¢
¢

lowing way:

and aqs- These expressions can be derived in the fol-
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The relations
z=z}i and Z=z—iws

can be considered as equations of transformation from the

coordinates (z, @) to the independent coordinates (z,z). It

follows then, symbolically, that

90 _0_ .0
2z oz ‘0w
and )
o) .
2% ~ o ow
Therefore 5 5 5
Q:+'iQus=— (55""3'88 2’2

where ¢ is now a function of the independent variables z
and Z.
The conformal transformation z=f({) then gives

gt—l—'igm: -gé%?:
or .
. 2
Gtig=—T 3 o (51)
where i
2
‘p_dﬂ?
Symbolically,
ym L2 0 .2
>y ot 'on
and therefore
2d_g ba: foo] 44 s Or
s 35 kD) ot On
Then, by means of the Cauchy-Riemann relations
%z_ 0w d or_ 0w
Dk on ¢ 2y TR
it follows that
ds_ds_ o
&~ OF ‘on
or g
z oW
T oy 5
Equation (51) therefore becomes
o 1(0n 25\ (% 06
Gt ia= 7(5t50) (3t
__1(%, .25\ (%, 06\ .
=—7 bn-l—z ok (as-l-z bn> (52)

where

=30 +(5) =30 +(5)

‘When thereal and imaginary partson both sides of equation (52)
are equated, it follows that

¢ oz b¢ fo 7

Of bE o1 Oy
0¢ O , 0¢ O (58)

_ ¢ 255, D¢ dw

2=="71\2£ % " 97 0
By means of these equqﬁons ¢:* and therefore the pressure
coeﬁicient PP given, respectively, by equations (50)and (49)

U?
2p

can be obtained as functions of the independent variables
£ and 1.
APPLICATION OF THEORETICAL RESULTS
SYMMETRICAL JOUKOWSKI SHAPE

General expressions.—The theoretical results of this paper
will now be applied to the case of a body of revolution whose
meridian section is a symmetrical Joukowski profile with-
both rounded nose and tail. This example is sufficiently
complicated to illustrate the principles and usefulness of
the method.

It is well known that by means of the mapping function

z=Z’+%27 (54)

the circle of radius a, with its center at the origin of the Z’
plane, is transformed into the line segment extending from
z=—2a to z=2¢a in the z plane; and the circle of radius
a(l1+t¢-te) with its center at Z’=¢a 18 transformed into a
symmetrical Joukowski profile with rounded nose and tail
in the z plane (fig. 2). When Z’ is replaced by Z-¢a,
equation (54) becomes .

YY o
lo} 2 f} x
" a, a,
A a D\J

ZﬁZ—pfb'res

FiaorRE 2.—Mapping of a circle into a symmaetrical Joukowski profilo.

x—plane

a!
*=Zteitz e
or
2 3 4 5
z=Z+eaa +('LZ_51%3+512%_513§Z+ ... (65)
A comparison of this equation with equation (6) shows that
=60, G=0a* G=—@, G=c’a}, u=—ed, . . .

Also, the radius of the circle in the Z plane being denoted
by aee, it follows that

ee=14+et6 (56)
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According to definition

=4 = Omi1 _
b 22 and b, 2(aeh) ™+
where
ms1

As a;=a? and apy=(—1)"q"a™ 2, it follows therefore that
=0 and b,,=%(‘—,1)up (57)
The expression for the velocity potential then becomes

d=dot+ ¢+t . . .
where, from equation (23)
0=A1P1 (#)Ql()\) (59)

(58)

with
- 4 2aU
A=—r00

From equation (38),

¢s=F1(N) P1 () -+ F5(\) Ps(n)

where

and .
No=cosh a=3(1+atat1rigs )
From equation (26)

1=Fo(N) Po () +F2(N) Py(u) (60)

where

RN =5 i [3120:0) + Q001+ VF—110 ) — @ ()]

Fu)=B:0:0)
+2 0 E 2000+ QO01+/F=110) ) +20: 0]

and

B2=—€1A1Q2l—)\(0)\07{ 3Q1,(>‘0)+2‘\/)\02:—' I[Qol (}‘0)]2 J

(61)

FV=B&0N) +5aB:{ 3 20,0 +3:0014+VR—T [0/ ()~ Q1)

3 et [ 243 Q) =3 Q) —F @)+ YF=T | —20M+ @M+ ||

FO=B@MN+EaB{ £ 20,0 +30:1+VF—T [/ ) +4@01]

+2ea [-3-2 e - am—F e M+ w1 Fam+2em+5em |}

and

B\@y' ()= —% aB; <3Q2()‘0)+ Q&' —% v {8Q:(0)+ Q0" (M) —% [Q’ ()‘o)]2}>

—Ze2, (—6Qu09)+3Q:00+5E @/ 00 =2 @7 00 —§ YN (90400 1505 00— 11105 (T )

BiQs 09 =—3 B2 3.0+ 0/ 00)— 5 | '3 200~ F %00+ (0 ||

—Zad, {160,000 - 000 -0/ 0050 00 - 73— [ 16+ 35000 -0 -0/ 0 ||

Velocity and pressure.—From equation (54) together with
the transformations

Z'=qat+Z and Z=ae%e™¥

it follows that
1
z:a(el_l_eiﬁ'a cos E) (1+612+2elel1+a CcoSs E._l_ez(r"a))]

J 62)

or_ ittt
ot —aerte sin 5{1_[61’+2ele"+ = cos £ €7 “’]’]

) 1
w=—aersin ¢ <l_e1’+2elef*“ cos £+t “’)

Then

and
[El2+ef(q+a)]eq+a cos $+26162(q+a)
[e2 267« cos EFePtrFa]?

»g—::=ae'f*“ cos £—

At the surface of the body =0, so that

g . @ o [1 € —e2 ]
0E )y TSR & 1 o e Gos EF e

(e2+€*¥)6= cos £4-2¢,6%
(e+2ee® cos £+6*)*

(63)

(57)y e con

Therefore

2 ‘ 1+42e*a(1—cos 2¢)
(Jg)'“":azeza[l_ﬁ*-l-.?qe“ cos EF e T (a3 2¢6% cos E-I-e’“)’_-l
(64)
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The boundary condition at the surface yields immediately
the expression for (g—d’) Thus

~(on)=(%%)..

where the expression for (gi;) is given by the second of
=0
equations (63).

(65)

The expression for ( is obtained from the equation

af =0
for ¢. Thus, the velocity potential can be written as,

¢=A,P1 (1) @ (N) +[Fo(N) Po() + F2 (M) Pa()]
+IE (N Py(0) +Fs(W) Ps()]+ - .«
Then

~(50).

where A, Fi(\), F2(N), and F3;(\) are obtained from
equations (59), (60), and (61).

By means of equations (63), (64), (65), and (66) the
velocity ¢. of the fluid and the pressure coefficient ? —L
" Uz

2p

given, respectively, by equations (50) and (49) can be
evaluated.

=[ 4,009+ F00+27.00 Jsin 43700 sin 2¢

+%F3(x,,) sin 3t— . . . (66)

Numerical example.—As s numerical example, consider the

cese where ¢=0.15 and =0.10. Then e*=1+4¢+4 =~

and
<£> 209+5 _ 1540 1
3a),0 120 T8 5T T3 ST 75 cos &
s (67)
o 5 . 200
(ﬁ),-o‘ §s‘n5<_1+317+75 cos ¢
Also
1/028\ _ 5 61600
5a\3E/,.,— & S0 ’3[1+(317+75 <08 £)°
(68)
1 z_;5> 5[ oos . 200(754:317 cos £)
2a\ 31 /)y 8L (31775 cos §)°
and
( > gg[l 400 45000(83—25 cos 287 4
% 64| T 3T7F75cos £ (31775 cos &) (69)
Now,
8a+8 a _ea_e—a_-g—
N=TT =g and VR T=E
Therefore, from equations (24)
160
Q%) =2.19723; Q) =—100% Q' () =ans

Qi(N)=1.25215; @' (N) =—18.04969
Q:(M) =0.82657; @, (Ao) =—15.99664
Qs(N) =0.57729; Q' (\g) =—13.91684
and from equations (59), (60), and (61)
A,=0.055403(2a 1)
B,=0.502158¢*(2a0)
B,=0.431087¢(2aU)
B;=0.537892¢2(2aU)
Fi(2)=0.079143¢2(2aU)
Fa(0)=0.245119¢,(2a 1)
F3(2)=—0.180438¢%(2a 1)
Then, from equation (66),

(bs —2¢U1(0.069373+0.011479¢?) sin £
=0 .
1-0.367679¢; sin 2t—0.338321¢? sin 3¢
or with ¢=0.15,
- %"; =20T/(0.069631 sin £4-0.055152 sin 2¢
™ 0.007612 sin 3§) _ (70)

From equations (65) and (68),

200(754-317 cos §)
(81775 cos £)?

~(8)_ =3ea)| cos t— @)
=0 )
Table I presents the calculated values of the quantities
given by equations (68), (69), (70), and (71) for intervals of
10° in the angle £&. Table IT gives the coordinates of the
profile and the corresponding values of the velocity g./U
PP,
1
3°U
i .8

and the pressure coefficient Figure 3 shows the

1.6 PR,
%pU?

FI0URE 3.—Pressure distribution at the surface of a Joukowsk! shape.

graphs of the meridian profile and the pressure distribution.
77 P=
2"U’

obtained by the method of reference 2. It is seen that the
numerical results obtained by the two methods agree almost
perfectly.

The small circles on this graph denote the values of
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LOW-DRAG SYMMETRICAL AIRFOIL SHAPE

The abscissas and ordinates of the meridian profile are
given in table ITT. The first step is to obtain they(¢) curve
of the meridian profile according to the method of Theodor-
sen and Garrick (reference 3). The ¢ in reference 3 corres-
ponds to the —¢ of the present report. A Fourier analysis
of they(¢) curve is then performed and immediately yields
the conformal transformation of the meridian profile into a
circle. 'This conformal transformation is then looked upon
as the equations of transformation from the rectangular
Cartesian coordinates (z,) of the meridian plane into the
orthogonal curvilinear coordinates (£, 5), defined in such a
manner that the coordinate line y=0 is the meridian profile
itself. For y=0, then, these equations yield the parametric
equations of the profile and for the present numerical
example they are as follows:

2ia=o.08895+o.98698 cos £—0.05586 cos 2£
-+0.03553 cos 35—0.01122 cos 4¢4 . . .

(72)
0] . .
—2—G=—O.25762 sin £—0.05586 sin 2¢
+0.03553 sin 3§—0.01122 sin 4¢4 . . .
The chord ¢ of the profile is given by
c=2.0450a
e LT T T 1]
-”‘777‘69‘-&5 (=4
4 h T k\\ -
W\ - -
i T
V1 VRN AP -
-4 i \\\ all YT
° \ 1 ]
o Y fwo-dmensonal
=6 LT T T 1]
0 10 20 30 40 50 60 70 & S0 /00
Percent chord
F1aURE 4.—Pressure-distribution curves,
TABLE I
CALCULATED VALUES FROM EQUATIONS (68,) (69), (70),
AND (71) -
g | 1sor RNL 1 1 (% 1\
(deg) m('o‘s).-o m(g:),-o mv@%),-oza_v(a»).-o ) -
0 o 0.30613 0 —0.30612 | 0.08371
5 —. 07635 30428 —. 01368 —.30426 | .09840
"10 —.15220 - 20871 —. 02715 —. 20871 M2
15 —. 22748 . 28953 —. 04022 —. 28053 . 13557
2 —.30145 . 27680 —. 05267 — o788 | .16753
30 —. 44448 - 24178 —. 07407 —. 24178 | .25600
40 —. 57824 .19543 —. 00248 —.10543 | .37255
50 -—. 69990 . 14049 —. 10385 —. 14049 . 50959
60 —. 50858 - 05025 —. 10807 —. 08025 - 65702
70 —. 80544 -01840 — 10460 —. 01849 - 80216
£0 —.06362 | — 04072 —. 09403 .04072 | -93022
80 [ —L00SI13 | —. 00320 —.07724 .09320 | L.02502
100 | —L02584 | —.13562 —. 05630 -1355 | . L0071
110 | —1.01351 | —.16465 —. G337 (16455 | 1.05428
120 - —. 17859 —. 01254 -178%9 L98017
130 —. 85699 —. 17698 . 00478 . 17866 81876
140 —. 76911 | —.16736 ~01615 -16735 61953
150 —.61553 | —.14868 - 02056 . 14888 40096
160 - —. 12888 .01823 12888 20188
170 —.22162 | — 11399 - 01058 11399 06311
176 ~—. 11164 —. 10988 . 00648 .10888
180 ~.10847 0 10847 01177

'TABLE II

RELATIVE VELOCITY AND PRESSURE COEFFICIENTS
CORRESPONDING TO PROFILE COORDINATES

I o ' —De
(deg) 2 2a % )}p 6’
0 1.0572 0 1] 1
5 1. 0538 . 0267 . 91765
10 1.0438 .0530 . 535619 . 713587
15 10273 .0787 . 72700 .47148
20 1. 0042 . 1034 . 88521 . 25141
30 . 0300 1489 1. 02660 —. 05390
40 8406 1873 1, 09887 —. 20751
50 .7378 2168 1.12593 —. 20709
60 . 6061 1. 12840 —. 27330
70 4673 2446 1.11687 . 24600
80 . 2048 2425 1. 09680 —. 20263
20 L1223 2307 1.07204 —. 14927
100 —. 0568 . 2105 1. 04530 —. 09369
110 —. 2340 .1842 1. 02000 —. 04036
120 —. 4074 . 1540 . 00609 . 00781
130 —. 5699 L1225 . 97500 . (4033
140 —. 7140 . 0022 . 05662 . (08488
150 —. 8363 . 0645 . 93905 .11718
160 —. 9279 . 0403 . 01741 . 16836
170 —. 0851 . 0193 . 84684 . 28287
176 —. 0997 . 0095 . 67771 54071
180 —1. 0045 0 0 1
TABLE III

ABSCISSAS AND ORDINATES OF MERIDIAN PROFILE

(percanlt; chord) (pereen? chord)

o

o, nppropobPERERRSR Roparwpro

CEBNREIRSREERRRURBRIBRRAR

SRR B R BRBAEREBRB R nppor, |
8888833388822 2838888RES

—

Equations (72) may then be written as

1;=0.04350+0.48263 cos £—0.02732 cos 2¢
+0.01737 cos 3£—0.00549 cos 4¢&4 . . . (73)

=—0.12598 sin £—0.02732 sin 2¢

+0.01737 sin 3¢—0.00549 sin 44 . . .

ol

Table IV gives values of % and %’ calculated according to

these equations and figure 4 shows the very good agreement
between these points (small circles) and the profile plotted
from table I1I (solid line).

With the coefficients of the conformal transformation

“known, the next step is to obtain an expression for the veloc-

ity potential ¢ at the surface of the body. For the present
numerical case,

$=2aT7(0.00687-0.08181 cos £-1-0.03384 cos 2¢

—0.02251 cos 3¢+ . . ) '(74)'
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TABLE IV
CALCULATED VALUES FROM EQUATIONS (72) AND (73)
£ sin &ln 2¢ sin 3¢ aln 4¢ cos & cos 2¢ cos 3¢ cos 4t _’c’ ::i
0 0 (i} 0 0 1 1 1 0.5107
5 . 08716 .17385 . 25882 . 34202 . 09619 . 98481 . 08533 . 93069 . 5080 —.0131
10 - 17385 .34202 - 50000 -64279 - 88481 - 63069 - 86503 - 76604 -5040 —. 0261
15 . 25882 - 50000 70711 - 80603 - 96603 - 85603 70711 - 50000 L4036 —.0388
20 . 34202 .64270 - 85603 . 88481 - 63000 . 76604 . 50000 -17365 .4838 —.0510
30 - 50000 . 88603 1.0000 . 88603 . 85603 . 50000 0 —. 50000 -4508 —.0740
49 .64270 - 98481 . 868603 -34202 -76604 - 17365 —. 50000 —. 93069 ~4049 —. 0047
50 . 76604 - 88481 - 50000 —.34202 -64270 —~.17365 — 86608 —. 63069 -3488 —.1129
60 . 86603 . 88603 0 —. 86803 - 50000 —. 50000 —1.0000 —. 50000 .2838 —.1280
70 . 63060 .64270 —. 50000 —.08481 .34202 —~. 76004 —. 86603 .17365 .2135 —.1592
£0 .o8481 .34202 —. 86603 —~. 64279 . 17385 — . 93060 —- 50000 - 76604 .1401 —.1449
%0 1.0000 0 ~1.0000 0 —1.0000 0 10000 . 0653 —.1434
100 . 98481 - —.34202 —. 86603 . 64270 —.17365 —. 03069 . 50000 . 76604 —.0102 —.1333
110 . 83080 —. 64279 —. 50000 .08481 —.34002 ~. 76604 $6603 -17365 —. 0868 —.1149
120 . 85603 —. 86603 0 . 86603 —. 50000 —. 50000 1 —. 50000 —.1640 —.0002
130 . 78604 —. 08481 . 50000 .84202 —. 64270 ~.17365 . 86603 —. 03080 —. 2418 —.0628
140 . 64270 —. 08481 - 56603 —.34202 —. 76804 .17385 - 50000 —. 93069 —~.3171 —~.0372
160 - 50000 —. 86603 1.0000 —. 86503 —.86603 - 50000 0 —. 50000 —.3854 —.0172
160 .34202 —. 64270 . 88603 —~. 98481 —. 03060 76604 —. 50000 17385 —. 4108 —~.0051
170 . 17365 - - 50000 —. 84279 — 98481 - 93069 —.86603 . 76604 — 4767 ~.0003
180 0 0 0 0 —1.0000 1.0000 —1.0000 10000 —.4883 0
) TABLE V
CALCULATED VALUES FROM EQUATIONS (49) TO (58)
g | 3 | @ || 5 | ¥ | @] 8 | %
H 55/ 2 5 /2a (,m = (U = [2U % > x + 5
0 0.3077 0.0847 0 0.3077 1 0 0
15 —. 2361 . 2027 L1414 . 0073 . 2027 . 5937 —. 5037 .4188 L6472 L5812
2 —.3138 .2822 1781 -0130 2822 S4041 — 5178 C5088 . T745 ~4002
30 —. 4644 . 2565 .2825 -0320 . 2565 .1809 —. 424 L8785 . 8357 1245
10 —.6018 .27 L4135 . 0608 .2279 0372 —.3848 1.060 1.030 —.0601
50 —. 7147 .1963 L5493 .0958 -1963 —. 0542 —. 2896 1.195 1.083 —.1052
60 —. 7060 L1871 L8507 -1205 L1511 —~.1190 —. 2208 1.301 1.141 —. 3008
70 —.8466 .1028 72 1541 21026 —~.1660 —.1412 1.877 1.174 —.3m7
£0 —.8703 L0274 L7582 L1622 0274 —~ 1862 —. 0374 1.406 1.186 —. 4060
%0 — 8804 —. 0658 L7798 L1403 —. 0668 —~.1629 -0883 1.360 1.166 _ —.3602
100 —, 8800 —.1688 .8188 1159 —.1688 —~.0011 - 2060 1.233 111 —. 2333
110 —. 9018 —. 2582 .8788 .0671 —. 2582 . 0070 2843 1.067 1033 —. 0670
120 —. 0128 —. 3187 L9313 0122 —. 8137 . 0937 L3115 -9185 . 0584 .0815
180 —. 0040 —. 3185 -0183 —.0377 —.3195 L1481 .3011 .8163 -0034 L1837
140 —. 8521 —. 2734 L8003 —. 0726 —. 2734 .1705 . 2662 . 7689 -8T09 2912
150 —~. 7357 —.1897 L5172 —. 0862 —.1807 1710 .2188 -7330 . 8561 2670
160 —. 5459 —. 0054 .3071 —.0740 —. 0854 .1612 .1468 . 7251 .8515 2749
170 —.2017 —.0220 .0868 —.0427 —.0220 .1512 . 0641 . 7248 .8512 2764
180 - 0056 - 0000 0 . 0056 1 0 0 1

oI}

(%) _ (9_93
(a‘fl n=0 U aﬂ)qno

The boundary condition at the surface of the moving body
is simply

Since g—z=—3§; it follows from equations (72) that

—(%; ,—20U(0.25762 cos §+0.11172 cos 2¢
ﬂl:l

—0.10658 cos 3t40.04489 cos 4t~ . . .)

—(%¢
af n=0

and from equation (74) that

—0.06752 sin 3¢+ . . .)

=——==—0.98698 sin £-}+0.11172 sin 2¢
—0.10658 sin 3£40.04489 sin 46— . . .

oxr__ Ouw
of Oy
@= )
o ot

Also, from equations (72),

=—-=0.25762 cos £4-0.11172 cos 2§
—0.10658 cos 3&-4-0.04489 cos 45— . . .

=2¢{J(0.08181 sin £4-0.06768 sin 2

(75)

(76)

(77)

Equations (75), (76), and (77) suffice to determine the pres-
sure distribution over the surface of the body with the use
of equations (49) to (53) contained in the section entitled
‘Velocity and Pressure.” Table V presents the calculated
values of the various quantities given by equations (49) to
(53), the last column containing values of the pressure

coefficient Pl;?f Figure 4 shows the graphs of the pressure
U

distribution for both the body of revolution (solid curve) and

the airfoil of infinite span having the meridian profile as

cross section (broken curve). - .

LanagLEY MEMORIAL AERONAUTICAL LIABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
Lanarey Fierp, Va., May 18, 1948.
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