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ON THE USE OF RESIDUE THEORY FOR TREATING THE SUBSONIC FLOW OF A
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SUMDMIARY

A new mathematical iechnique, due to Milne-Thomson,
18 uged fo obfain an improved form of the method of Pogg
for ealculating the effect of compressibility on the subsonic
flow past an obstacle. By means of this new method, the
difficult surface integrals of the original Poggi method can
be replaced by line integrals. These line integrals are
then solred by the use of residue theory. In this way an
equation 18 obtained giving the second-order effect of
compressibility on the velacity of the fluid. The method is,
moreoter, practicable for obtaining the higher-order effects
of compreseibility on the velocity field. As an illustration
of the general result, the flow past an elliptic cylinder is

discussed. :
INTRODUCTION

There has been in recent years an increasing interest
in the problems of flow in which the compressibility of
the fluid is taken into account. The effect of compressi-
bility on the subsonic flow past various simple shapes
has been calculated by the method of Janzen and Ray-
leigh or by a method due to Poggi. Both of these
methods, however, involve mathematical difficulties,
which discourage their use for further study of com-
pressible fluids. For example, the second-order effect of
compressibility on the velocity field around an elliptic
cylinder has been calculated a2pproximately by the
method of Janzen and Rayleigh but, owing to & certain
limitation in the analysis, the result applies only to
thick ellipses (reference 1). In order to eliminate this
wesakness in the theory, the calculation was repeated by
the method of Poggi in reference 2, the result being
expressed in 2 closed form. This method, however,
also involved considerable difficulty owing to the neces-

sity of evaluating many difficult integrals during the.

course of the analysis.

In the present paper a method, based on that of Poggi,
is presented for dealing with problems involving the
subsonic flow of a compressible fluid. Poggi’s method
consists in regarding a compressible fluid as an incom-
pressible fluid with a continuous distribution of sinks
and sources throughout the entire region external to the
obstacle. In the determination of the second-order
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effect of compressibility on the velocity of the flyid, this
concept of a compressible fluid leads to a series of double
integrals extended over the entire region of flow. In
the present paper, by means of a novel mathematical
technique utilizing complex notation, the surface inte-
grals are replaced by line integrals. By means of the
well-known methods of the calculus of residues it is then
shown that the second-order effect of compressibility
on the velocity field around an arbitrary shape can be
explicitly expressed in terms of residues. The method,
moreover, is equally practicable for determining the
higher-order effects of compressibility. As an example

of the general result, the flow past an elliptic cylinder is
discussed.

It is worthy of mention that a paper which also em-
ploys complex notation has appeared recently (reference
3). The purpose of that paper was to complete Hooker’s
treatment of the elliptic eylinder (reference 1). The
method used is equivalent to the original Janzen-
Rayleigh process except that the differential equation
for the velocity potentizl is expressed in terms of the con-
jugate complex variables zand 2. The treatment in the
paper is limited, however, to the elliptic cylinder, with
no attempt made to obtain results applicable to arbi-
trary shapes.

THE METHOD OF POGGI

The equation of continuity for a compressible fluid
moving irrotationslly in two dimensions and with the
adiabatic relationship between the pressure and the
density can be written as follows:
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¢o velocity of sound in undisturbed stream
U velocity of undisturbed stream
g magnitude of velocity of fluid
v ratio of specific heats at constant pressure and
constant volume
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Equation (1) may also be written as
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where the symbol A denotes the Laplacian operator
b’ o?
@

and where M is the Mach number U/cg' It is next

assumed that ¢ can be developed in a senes of ascending
powers of M*. Thus

¢~¢o+¢1m+¢zM‘+ e
Then if a complex velocity w is defined as

w= —u—[—w—%%—— 1 ?’z
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it follows that

W=wo+wxM*+w=M‘+ o - @)

where.

—@%, wl=%— b_g_;’ and so on.
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The magnitude ¢ of the velocity of the fluid is ziven by

| @=w=(—ut+i}(—u—iv)=u’+o*

or from equation (4),
@* =Wyt (Wytlr + Waton) M*
+ (o + Wows + 10,86 M+ (5

If the expressions for ¢ and ¢® from equations (3) and
(5) are substituted in equation (2) and the terms of
the same powers of Af on both sides of the equation are
equated, it follows that

Agy=0
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and so on for the higher powers of M.

It-is to be observed that equation (6a) is Laplace’s
equation for the flow of an incompressible fluid. Thus,
if the known solution for the incompressible fluid is
used as the first approximation, the higher approzima-
tions for the compressible fluid may be obtained sue-
cessively from equations (6b), (6c), etc. Poggi’s method
consists essentially in considering the compressible
fluid to be an incompressible fluid with a continuous
distribution of sinks and sources in the euntire region
external to the solid boundary. According to Poggi,

(6a)

(6b)

(6¢)
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then, the right-hand sides of equations (6) represent
successive terms in an infinite series giving this sink-
dource distribution. The first approximation to the
strength of the sink-source distribution in the plane of
flow is therefore given by

1 [0 O, —
— G| o2 2 D) + 32 £ o) |dz dy
If new independent variables z=z+1y and 2=z—1y are
introduced, then symbolically,

>
% az+ >
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and the expression for the strength of the smk-source
distribution becomes

o[38 G2 e o

This expression can be further simplified by means of
the following considerations: From the definition of the
complex velocity,

(7)

.0
'w-—a—t?'y
it follows, by use of equations (7), that
Ry .
w= aqs and w—2%% )]

In particular, wy, being the complex velocity of an in-
compressible fluid, is a function of z ouly. Expression
(8) can therefore be written as

(10)

Let the plane z of the obstacle be represented con-
formally on the plane Z of the corresponding circle.
Since the strengths of the sink-source distribution
of corresponding elements of the two planes are equel,
it follows. that the expression for the strength of the
sink-source distribution of an element of the plane Z

is given by
1 42 4 (5d2\ | —dZ d (+.dZ
—EU—[H L2 (T, )+m rdz(t,%ﬂdm

1)
dz dz
where dz dy has been replaced by — 7T dX dY and uy by

W"EE' where W, is the complex velocity of an incom-

pressible fluid past the circle in the plane Z.
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If the radius of the circle nto which the profile of
the obstacle is mapped is assumed to be R;, the complex
velocity induced at any point Z; external to the circle
by a source of unit strength is given by

1 1 1 1
%R,
A P
where there are unit sources af the point @(Z) and the

2 :
inverse point R(%)and a unit sink at the center of the

circle (fig. 1). It follows, therefore, that the complex
velocity induced at the point Z, by the sink-source
distribution given by expression (11) is
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FiGURE 1.—Image of a simple source with regard fo a circle.
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where the integrations are performed over the entire
region external to the clrele. -

As noted before, (W7), is the complex velocity in-
duced at any point Z, external to the circular boundary
by a sink-source distribution originating in the plane
z of the obstacle. The actual velocity (), of the
fluid at the corresponding point zs in the plane z of
the obstacle is given by |

= WI%ZE (13)

the subscript P having been dropped. It will be observed
that w, is expressed as a_function of the conjugate
complex variables Z and Z of the plene of the circle.

THE METHOD OF RESIDUES

Equation (12) in its present form appears to be
unmanageable. It can be transformed, however, into
a form suitable for further treatment by meens of the
following theorem:
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FigURE 2.—ITustration of Stokes” theorem for the plane.

Consider a contour in the plane Z of the eircle con- .
sisting of a closed curve O enclosing the circle of radius
R,, a small closed curve (: enclosing the point Z5, a
very large closed curve (; enclosing both () and (),
and the lines AB and D connecting, respectively, the
curves C; and C,, and G and G; (fig. 2). The contour
is described in such a manner as to leave the ares S,
regarded as enclosed by it, on the left. Now, suppose
F(X,T) and G(X.Y) to be vector components along the
X and 7 axes, respectively. Then Stokes’ theorem for
the plane states that

f f(w 0 X dy= f (FiX+6GdY)

- L(FdX—i—G’dY) L(FalX-[—GdY) ﬁ(FdX+GdY)
(14)

where the line integrals on the right-hand side are
taken in the counterclockwise sense.

If g(Z,Z) is a function of the independent variables
Z.Z continuous and differentiable in the region S _
enclosed by the contour C, then since . e

% 2 .o
dZ 20X ‘oY _

it follows that _ -

ffggzdx dY_ff( -ay X dY A

By Stokes’ theorem, equation (14), it is scen that
f f %X dy=1 f (Gd¥ +igdX)=%i f dZ
8 c c

2

or

J [z ax =%":L-;7“’Z‘%i Lﬂdz—%ij;gd? (15)
Similarly
ffang dY— ——1ngZ+2 ljgdZ+2 Lﬂz (16)

These equations were first given by L. M. \Iﬂne-
Thomson (reference 4).
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In the present problem where the area § is the entire
region external to the circle of radius R,, the curve C,
is the circle itself, the curve (, is.a vanishingly small
circle with the point Z, as center and the curve (3 is an
infinitely large circle with its center at the origin. By
means of equations (15) and (16) it is possible to replace
the surface integrals of equation (12) by line integrals
around the circles €, C;, and C;. For the purpose of
evaluating the line integrals it will be observed that if is
possfble tomake the integrands analytic. The solution of
any given problem therefore reduces to the evaluation
of residues, for they form the only contributions to the
integral of a function that is analytic at all points except
singularities. In order to transform the surface integrals
into line integrals, it is first necessary to express the
integrands as derivatives with regard to either Z or Z.
I4is to be noted that the first two integrands of equation
(12) are already in this form. The last two integrands
can be brought into the required form in the following
way: It is observed that

=,0Z2 _d{ (42
Hrﬂ!_E =E‘Z(f rogdzdz
A2 [wiaz)

°dz
The third and the fourth integrands of equatxon (12)
become, respectively,

anr d — 47
I dZ(“ Z)f W dz]

W.,dz)fmdz ]

By means of equations (15) and (16) it follows that the
line-integral form of equation (12) is

1 1 =
(W)o=—gergn | Z_—mez,mz

_RPZF2
83

a7

(18)
_B*Ze_
d R—Z:.Z dZ

F(Z.2Z)dZ (19)

Z— R,’/Z

where

FZZy=Waw 3L dz+g(w 35) f W‘o’ggdz
4ZdZ, 4

(20)
dz dz dZ dz)f L

The integrals of equation (19) are teken succ_esswely
around the circle C; of radius R,, the circle C; of vanish-
ingly small radius R,, and the circle G, of infinitely large
radius Ry. Eachof theseintegrals is taken in the counter-
clockwise sense, end therefore due regard must be
glven to the sign in accordance with equation (15); that
is, the sign of the integrals around ¢ and G, is negatlve
and that around C; is positive.

F(Z.2)=W2W
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The result of the integrations around the circular
contours €, Ci, and C; can be explicitly expressed
by means of Cauchy’s theorem on residues. This
theorem states that, if f(Z) be analytic on a contour C
and throughout its interior except at & number of poles
inside the contour, then

f f@iz=2eiM @n

where M denotes the sum of the residucs of f(Z} at those
poles which lie within the contour €. Similarly,

f 9@)dZ=—2xiN (22)
where N denotes the sum of the residues of g (Z) at those
poles that lie within the contour C.

Consider, for the moment, only the first integral of
equation (19). In general, F(Z, Z) is a function of
both Z and Z. On the contour of integration C, how-
ever, Z=R?*Z and therefore F(Z,Z)=F(Z,R*Z). Thus,
an anelytic function of Z has been created and the
theorem of residues given by equation (21) can be ap-
plied. Similar considerations hold for the second integral
of equation (19) with Z=RYZ, but in this case the
theorem. of residues takes the form given by equation
(22). It is to be further noted that F(Z,Z) is the con-
jugate complex of F(Z,Z). This fact simplifies matters
to a great extent in that the result of the sccond inte-
gration can be written down immediately from the
result of the first integration.

Consider the first line integral of equation (18):

In the mtegral around the circle C; ¢ of radius R, with
center at the origin, the poles of F(Z,Z) associated with
the terms involving only the variable Z lie within the
contour, while the poles associated with the terms
involving only the variable Z lie outside the contour
because Z=R,%/Z. The poles lying outside the contour
together with the simple pole at Z=2Zp do not contribute
to the integral around €,. In addition, since Z=R,/Z,
there will correspond to each zero of Z a pole of Z at the
origin. Then, according to equation (21}, the result of
the integral around C, is given by

f 7—7- F@Z)iZ=2riS(Zy) (23)
oZ—Z

where S{Zp) denotes the sum of the residucs of

2
Rf‘ at the poles within the contour (.

~ In the integral around the circle & of vanishingly
small redius R, with center at Z=2Zp, the only pole
within the contour is the simple pole at Z=Z,. Since,
in the limit as the radwus R,—0, Z—Z, and 225, it
follows from equation (21) that

s

Z_l_ VA Zp) (24)
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In the calculation of the integral around the circle G;
of very large radius R, the first step is to replace Z by
R?/Z and thus to render F(Z,Z) anelytic. Further-
more, since the radius B; is ultimately made to approach
infinity, it is expedient to expand the integrand

7—7F&R2)

in the neighborhood of infinity. The residue is then
simply the limif of the coefficient of 1/7Z as By—> e
It will be observed that this coefficient is the constant
term in the expansion of F(Z,R,*/Z). 'This calculation
can be periormed for an arbitrary profile in the z plane
in the following way:

The conformal transformation that converts the
profile in the z plane into a circle with center at the
origin of the Z plane and leaves the region et infinity
unsltered is of the type

e=Z+at+ 5+ 2+ - (25)

where the coefficients @y, @;, as, . . . are, in general,
complex numbers,

Now suppose that the undisiurbed flow of velocity
U is inclined at an angle a to the negative direction of
the real axis and that the circulation I' is arbitrary.
In terms of the complex coordinate Z, with origin at the
center of the cirele of radius B,, the potential function
of the incompressible flow past the circle is

Hh@)y= U(Ze"‘—l- )—[— log Z - (26)
For this flow, the complex velocity is given by
~ta
~Dop(e=-BEV ) e

By mesans of equations (25) end (27) it can be shown
very easily that in the limit By— « the constant term in
the expansion of F(Z,R;*/Z) is simply [Pe'«. It follows
therefore from the residue theorem, equation (21), that

1 R o1 o TTEd

fc', mF(Z,Z)dZ—-ZnU‘s (28)

Consider the second line integral of equation (19):

As noted before, the second integral of equation (19)

can be obtained immediately from the first. Thus, cor-

responding to equation (23), the integral around the
circle €, is given by

f g ZniZ-—2x5(3)

Z__

(29)

| where S(R}/Z5) is the conjugate complex of S(Zp) ex-

cept that Zp is replaced by R,*/Zp and not by Zp, and
where, for convenience, the internel pole at Z=R*Zp
has been excluded in this calculation.

The integral around the circle C; yields nothing be-
cause there are no poles of Z within this contour.
However, analogous to the residue at the simple pole
at Z=Zp within the small circle C, given by _equation
(24), there is a residue at the simple pole at Z=R,}/Z»
within the cn-cle C; (excluded from equation (29))

given by
B
732, 2)iZ= —an< ,z,,) o)

Jizg"

where, in ‘the evaluation of the integral, Z has been re-
placed by RB}/Zr and, on account of the substitution
Z=R}Z, Zhasbeen replaced by Zp.

Finslly, for the mtegra.l around the circle C; of in-
finitely large redius Rs, since F(Z,Z) is the conjugate
complex of F(Z,Z), it follows, according to equation -
(28), that the residue of

1 —
P, F(Z,2)
Zp
is UPe—*= and therefore

| __FZ.2)d7——2rill
z_ BSOS
¢ 477 |

In the summing up of these results, it should be
remembered that a negative sign is attached to the

integrals around O, and C; and & positive sign to the
integral around C;. It follows that

el s 55(%) 555 )]

— 2 y~1a
+eF (2.7 — (- R5)

Z—

@1

@2)

where_ the subscnpt P has been dropped and where
F(Z.Z) given by first of equatlons 20)

F(R‘ 2)
R‘?

The last term of equation (32} is equel to —:i- the com-

obtained from expression for ¥(Z,Z) by re-
placing Z by R?*/Z

<given by equation (23)

obtained from expression for S(Z) by re-
placing Z by R2Z

plex velocity of the incompressible fow without cir-
culation past & circular cylinder of radius B,.
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In equation (32), the terms in the brackets and the
last term (representing, respectively, the integrals
around the circles €, and C}) are analytic functions of Z

and are therefore solutions of Laplace's equation, On.

the other hand, the second term in equation (32)
(representing the integral around the circle (%) is & non-
analytic function of Z,Z and is & particular solution of
Poisson’s equation. Furthermore, the complementary
solution and the particular solution are such that, taken
together, they satisfy the appropriate boundary con-
ditions of the problem; that is, the velocity of the fluid
normal to the boundary C, is zero and the velacity of
the fluid at infinity is zero.

Finally, according to equations (4) and (13), it fol-
lows that the second approximation to the actual veloc-
ity of a compressible fluid at any point z external to
the obstacle is given by

w=(Ws+ W, M’)a— (33)
where W, is given by equation (32) and where W, the
complex velocity of an incompressible fluid past the
circular cylinder of radius R,, is given by equation (27).

In conclusion, it can be stated that, when the set of
surface integrals given by equation (12) are replaced by
the solution in the form of equation (32), the labor in-
volved in the calculation of the second-order effect of
compressibility has been reduced to & minimum, for it
is necessary only to evaluate residues. Thesame proc-
ess can be used, moreover, to derive equations analo-
gous to equation (32) for the higher-order effects of
compressibility on the flow past arbitrary shapes.

The general result of this paper given by equation (32)
will now be applied, mainly for the purpose of illustra-
tion, to the case of an elliptic cylinder.

APPLICATION TO THE ELLIPTIC CYLINDER

It is known that-the region external to 2 circle with
center at the origin of the Z plane is mapped on the
region external to an ellipse with foci at z=—¢ and
2=¢ by the transformation

c!
Z=Z+47 (34)
Thus, to a circle of radius ¢/2 with center at the origin

of the Z plane, there corresponds a line segment extend-
ing from z2=—¢ to 2=¢ in the z plane; and, to & con-
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Ficurx 3.—Conformal mapping of an ellipse Into a circle.

centric circle of radiug B ,(>¢/2) in the Z plane, there

corresponds an ellipse in the z plane with foci at 2=—¢
and z=c and with semiaxes given by

¢t c

(1‘-=R;+m’l‘, b=RI—4—R'l (Sec ﬁg. 3.)

By means of equation (34) the streamlines of the flow

past the circle can be transformed into those of the

corresponding flow past the ellipse. The irrotational

flow of an incompressible fluid past a circle of radius R,

is given by the complex potential

1@y =0(zem+ 202 (35)

where the undisturbed flow is of veloeity U inclined
at an angle o to the negative direction of the real axis
and where the circulation is zero.

Before the various terms of equation (32) for the case
.of the elliptic cylinder are computed, the process will be
simplified by the introduction of the nondimensional

Z;and y with the letters B, Z, and

/2 ¢f2 ¢/2
z being retained to denote the corresponding non-
dimensional quantities. It follows then from cquation

quantities —3

(34) that
dZ_ 1
dz 1
Z
dZ__ 1 ®8)
Z -1
j
and from equation (35) that
2,~fa
o= (s 257
€

— . 2 e
Wo=L (8- ‘“—R—w—lzi



THE USE OF RESIDUE THEORY FOR TREATING THE SUBSONIC FLOW OF A COMPRESSIBLE FLUID 45

By means of equations (36) and ‘(37) it follows easily, after the elementary integration indicated in the first of

equstions (20) is performed, that
P70 (e B (e

)i ) (1 “7)
—2[P(ete—R2e ) —————3] ¢ (e"“—Rl’e‘“)’ log = Z—1 (38)
In order o evaluate S (Zz), given by equation (23), the following expression is needed:

F(Z _ [PR3(Z%!e—R 1e )8
'Z ) ZXZ+1)(Z—1)(Z+-BP)(Z—RY)

2__
—2U‘(e‘“—Rl’e"“)[Rfe"’“+R1’e”"Z2+%(e““—R;’e‘“)’Z Iog%,?z zZ +1)}(z—1)= - (39)

In the first term of this expression, there is 8 double pole at the origin, simple poles at Z=—1 and Z=1 inside the
cirele €, of radius B;(>>1), and simple poles at Z=—R,* and Z=R,* outside the circle C;. The poles outside the

contour O, do not contribute to the residue S(Zs). In the second term, there are double poles at Z=—1 and

Z=1 inside the circle Ci.
The necessary technique for evaluating the residue at & multiple pole is as follows:

Suppose the function f(Z) hes a pole of order n at Z=a so that (Z—a)"f(Z) is analytic within and on the

contour enclosing the point @. Then the residue at the multiple pole is

o b i (40)

By the use of this rule, it follows readily from equations (23) and (39) that

. B2 (efe—Re %)% Rle “Ma 2R (e'e— Rle ) .t o
SO =Tl 7 L i Bk

RB2+1 1 B2+l
__(?__—)!(G(G_Rlle fa) (e _Rlzeh){ZZ(R‘l 1+_1 g 1 + ) (RI i 1 2 10 I + )]} (41)
where the subscript P has been dropped.

The expression for S (RI’/Z) follows from the expression for S(Z) if 4 is replaced by —i and Z by R,*/Z. Thus_

F % 2
—-—qg?(e“"—Rl’ef“) (eic._Rllc—ia){RI R‘—l—1+;_.1 ng +1) Z’(_RI \ 1 R: +1)] 42)

The expression for F (R%/Z,Z) is obtained from equation (38) by first forming the con]ugate complex
expression F(Z,Z) and then replacing Z by R/Z. Thus,

— R; _ (efaZI__Rl!e—fa)l 2812ZI(R1265¢_ —'fc) (gzﬁlz,_l_R 4e—ﬂf¢)
F(—’Z)" U’[( D@~ B~
Rllzs(efa_R 26 ia)!(Rlzafc
Gi—2"

Z—1 (43)

—p—ia
g )IOgZ-[-l
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The expression for F(Z,Z) is given directly by equation (38) and can be rewritlen in the following

form:
L G S “)’(M-e"‘)“——aufiz-z’»—n

!eia_e—l’u)l log

Z—1

Z+1 44

—2(e=—Ryte)

(Z2 1)

If the foregoing expressions for S(Z), §(R,2/Z), —Zl—, Z), and F(Z,Z) are inserted into equation (32),
it follows that : -

W 1 Bl 1 Rle¥e\ 1, (e ) (ca—Rle ) | 1 (ele—Ryle~®) (Zetae~%)
= ‘(' ‘4312(“““— 7 )‘431’ e R s A my

(eﬁa_ e-?fa) (Rlzeia . (efaZI_ Rl’e—fa) 3

—e ia)
7 RA RIPILY Ty vy oy X

_l(Rl2e ta__e—ta) (efu,_Rlze-—fa) %(Rfeia__e—fu) +RI2(__§%(81¢._R128—M)] log %;:-t_l,

Z(e*— Ry )2 (R 0% — e'e) z-|-1_ Rl \YR%'"
+4R log '{( ) ¢ ‘“)(z=—1)(z'—1)

—3 R;‘

(Z*—R,%*

+2(ele—R ") (Z,f o Z+ B L Bitee— eyt log Z +’1‘:|} (45)
VELOCITY AT THE SURFACE OF THE ELLIPTIC CYLINDER

The velocity at the circular boundary € is obtained from equation (45) by putting Z=R,e* and Z=R,e~*.
Since at the boundary the normal velocity of the fluid is zero, the velocity there must be purely tangential.
Then, by means of the relation

Qre=—1Wie?

where Q. is the tangential velocity at the boundary, it follows from equation (45) that

Q 1 (R*+1) cos (8+a)—2R,? cos (f—a) it (04-a) *
“>ctrch————81n (6+0)— 52 sin (6-+3a)+ B2 RA—3R,7 cos 2011 SN Zet ST s 9611
.R1 —2R1 cos 20!+1 R1!+1

— [ =3B sos gyl (B —1)* sin (0—a) +2R(R/'+1) sin 2 cos (9—a)—4R:*sin 20 cos (9-+0)] log iy

R*—2R:? 2a+1 . . . R24-2R 841
R B P e L[R2+ R sin (20— ) +2B? sin a—R?sin (20-+a)] log gt sl

?Rl sin §

—2BicosBatl ;4 priRS cos s (20—a)+2R;* cos Ry cos (20+a)] tan= 700 (46)

1
+§R1(Rl 1)(R {—2R.2 cos 249-{—1)2 -

As a special case of this equation, suppose a=0; that i 1s, the undisturbed stream is parallel to the major
axis of the elhpse Then

(43 sin @ C(B2—1) f .
t)“" 1) S]II. g— RIE(RI 1) R 4 2R2 Ccos 29_|_1 4(Rl QRII €os 20+1)21(R1’_1)[(1+3R12+Rl‘) sin &
_i?Rx sin 3}

+R?sin30] logg ,+ ~Ry(B/—1) sin 26 log g:,i;g: co8 gi}-i—ml[a?l*-l-_l) cos 26— 2R/ tan~pl20

This expression for the velocity at the circular boundary agrees with the result obtained. in reference 2 (with
1/R, replaced by o).

Another special case of equation (46) occurs when a=x/2; that is, the undisturbed stream is parallel to
the minor axis of the ellipse. Then,
Q“) cos § (B 1P 2 1
(‘U— ¢[f¢l¢ 2(R12+1) cos 9+R1’(R12+1)2 4 2.R2c05 28+1+4(R—"_2‘R12cos 29+1)"(R1 +1)[(1_3R1 +R;‘) COSB

+RiZcos 36] log Rl+ —Bi[(R+1) cos 20—2R7 log oy +§g‘ cos g::_—i—R,(R,‘ -1"’71%',3—_“-}3}

—1) sin 26 tan

. 'This expression for the velocity at the circular boundary agrees with that obtained in reference 3.
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According fo equation (37) the velocity of an in-
compressible fluid at the surface of the circular cylinder
of radius R, is

(§)...ron i

The velocity at the circular boundary, including the
second~order effect of compressibility, is therefore given

by
Q:) & ;)
(U circle =2 311'1 (6-!—0:)—[—]\1’( circle (47)
where %‘) o is given by equation (46) and where A{

is the Mach number U /e,.
Now, gccording to equations (36), it follows that, for
the elliptic cylinder,

dedz_, (1 i) 1
25 Gte)or
On the boundary itself, Z=R,¢* and Z=R,e®. Then

gsz_) circle R{(Rl —2R;? cos 26+1)

It follows, therefore, from equation (33) that, at the
surface of the elliptic cylinder

R
(%)dtirn (Bit—2R;* cos 25+1)2 )ciﬂ:u

where %) is given l?y equation (47).

As a final observation it is remarked that the result
for the example of the elliptic cylinder was obtained by
the use of the fundsmental equation (32) of this paper

with far less effort than were the results obtained by

the methods of references 1, 2, and 3.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
Lancerey FieLp, Va., September 8, 1941. )
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