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ON SIMILARITY RULES FOR TRANSONIC FLOWS

By CARL KArLaAN

SUMMARY

A method used by Tsien to derirve similarity rules for hyper-
sonic flows 8 utilized to derive Von Kdrmdn's similarity rules
Jor transonic flows. A slight generalization is introduced by
the inclusion of v, the ratio of specific heais, as a parameter.
At the lower limit of the transonic region of flow the theory
yields a formula for the critical stream DMMach numbers of a
given family of symmetrical profiles. It 18 further shown that
this formula can also be obtained by means of the Prandtl-
Glauert small-perturbation method. Intvestigation of the be-
havior of the similarity parameter in the region where the
thickness coefficient approaches zero and the critical stream
Mach number approaches unity shows that it possesses a
limiting valué characteristic of the preseribed family of shapes.

INTRODUCTION

The rigorous solution of the subsonic flow of a compressible
fluid past a preseribed closed body thus far has proved to
be of insurmounteble difficulty. As a consequence of this
difficulty the emphesis has been placed on the establishment
of & correspondence between the flow past a given body in an
incompressible fluid and the same body in a compressible
fluid. Among the best known results of this mode of attack
are the Prandtl-Glauert rule and the Von K&rmén-Tsien
velocity or pressure correction factor—both based on some
form of linearization of the fundamental nonlinear flow equa-
tions. None of the methods based on the linearization of the
fow equations, however, can yield correct results in the
transonic range where the flow is partly subsonic and partly
supersonic. For this case a certain amount of the feature of
nonlinearity of the flow equations must be retained in order
to obtain useful and nontrivial results. In the present paper
& detailed derivation is given of the transonic similarity
rules recently given by Von Kdrmén (reference 1).

FUNDAMENTAL EQUATIONS

In plane steady flow the equation governing the flow of a
nonviscous compressible fluid can be written in the form
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In the derivation of this equation the pressure is assumed to
be a function of the density only. If, further, the motion is
irrotational, then
ou do

dy oz 0 @

Here u and v are, respectively, the component velocities along
the Cartesian. z- and y-axes and c¢ is the local velocity of
sound given by
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where ¢; is the velocity of sound at a stagnation point
4=0, =0 and v is the ratio of specific heats at constant
pressure and constant volume.

Equation (1) is far too complicated to afford an insight into
the properties of potential flow in the neighborhood of
Mach number unity. The discussion is, therefore, restricted
to the flow past a thin profile. Thus, at first » is assumed

to be small in comparison with the sound velocity ¢;. Equa-
tion (1) is then simplified to
Ll
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By the introduction of the sound velocity for which the
local fluid and sound velocities are equal .
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equation (4) becomes
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It is desirable to. simplify this equation still further but yet
to retain those features which yield nontrivial and useful
results. Thus, if it is assumed that u is of the order of the

critical velocity ¢* and if only terms up to the order 1—%
are retained, then equation (7) can be written as

— (r+ 1) (=) Seto* =0 ®)

Thus far the irrotationality condition, equation (2), has
not been used. If, now, the undisturbed stream past a

slender body is of velocity U slightly different from the
83
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velocity of sound and in the direction of the positive z-axis,
then, according to equation (2) and the assumptions leading
to equation (8), a velocity potential & can be intreduced with

d=c*z-}(1—M*%)p 9).
where M*= % and (1 M*)p is the dist.urbanc_c:;-felﬁcify
potential.

Then _
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and equation (8) becomes . .. . _. . . . T
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Equation (11) is & nonlinear simplified form of the fundamen-
tal differential equation (1) and has been treated recently
by Von Kérmén in connection with similarity rules in two-
dimensional transonic flow (veference 1). Equation (11},
when expressed in hodograph variables, is of the type treated
by the Italian maﬂlematxcm.n F Tncoml some years ago

(reference 2). : : T . R

DERIVATION OF SIMILARITY CONDITIONS

Recently, Tsien (reference 3) derived similarity rules for
hypersonic flows where the fluid velocity is much larger than
the velocity of sound.

where the fluid velocity is very nearly that of sound.
According to the assumptions leading to equation (11), it
is implied that the solid body is thin and possesses no stag-
nation points and that the velocity of the fluid is everywhere
in the neighborhood of the local velocity of sound. Now,
suppose the profile of the obstacle to be symmetrical with
respect to both the z- and y-axes and to possess cusps at both
the leading and the trailing edges. ' Such profiles with uni-
form flow in the direction of the long axis-of-symmetry z
fulfill the assumptions leading to equation (11). The flows
past these profiles are said to be similar if the equation of
motion (11) and the boundary conditions can be expressed
in nondimensional variables in such a way that only a single

constant factor is involved. Thus, if 2a is the chord and 2b .

is the meximum thickness of the bady, then the following
nondimensional varigbles are introduced:

r=af
! a2
y=a(y+1)"t"

where t=g and m and n are exponents yet to be determined.

In the present paper the same proce-.
dure is employed to derive similarity rules for transonic flows .

It is clear that the nondimensional quantity involved is the
thickness coefficient ¢ since this quantity determines the mag-
nitude of the disturbance velocities. The exponents m and n
are to be determined in such a way thet the same constant
factor appears in both the equation of motion and the
boundary conditions.

The -appropriate nondimensional form for the velocity
potential ¢ is

p=ac*f(§,m) (13)

By substitution from equations (12) and (13), the equation
of motio_n (11) becomes

_<7_|_1)2m+1(1 Afﬁ)tzn_faf aﬁ;=0

The boundary conditions at infinity require that the flow
velocity be U. Hence, from the first of equations (10),

(at =)

The baundary condition at the surface of the slender body is

(1 M’*) ——c*g(i—')t (at y=0, ——ag-zga)-

where ¢ (g) describes the distribution of “slope along the

surface of the body.
By means of equations (12) and (13), the boundary con-
ditions can be written as:

-
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A comparison of the differential equation (14) and the bound-
ary conditions, equations (15}, shows that a single parameter
is involved if

2n =—(n+1) or n=-—'-?];-
1
2mtl1=-m or m=-—3 -

that is,
(v+ 1R (1 —A*)tR=2K
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The undisturbed-stream M ach number ;’H.,=cg ean be

introduced in the following way:
The general relation between 3* and AL, is

1/2
T
Mr=f ——— (16)

or
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o —1
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Then, if powers of 1—Af* higher than the first are neglected,

2 ,
I_M*——-'Y-I-l (1—AL)+ ..
Therefore
(l—Mn)[('Y+1)t]‘m=K an
The results obtained thus far are such that by means of the
substitution equations
r=at
y=a[(y+1)f]
‘P=ac"f(£; 71)
K=(1—M)[(v+ 1)

(18)

the differential equation for f(£, 4} and the boundary con-
ditions become:
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The meening of the similarity rule implied in the defi-
nition of the parameter K is the following:

If 2 series of bodies having the same distribution function
g(¢) for the slope but different thickness ratios £ are placed
in flows of different undisturbed-stream Mach numbers
Af, and different values of ¥, such that the parameter

K= [——('}r _[_il){,']m remains constant, then the flow patterns are

similar in the sense that the same function f(, n) describes
the flows.

RESULTS DERIVED FROM THE SIMILARITY RULE
PRESSURE COEFFICIENT

In the case of & uniform flow past a fixed boundary, the
pressure coefficient is defined as

OPI -“'[a=f)_1’a
g p=U?

where p., and p. are, respectively, the pressure and density
in the undisturbed stream and the static pressure p in the
fluid is given by

Then

im0

By means of equations (10) and (18), if powers of 1—23f,
higher than the first are neglected, the following result is
obtained:

—— M of
CP;Hn_ 7"[_1 (l -‘-11&) (1 +aE

or _
t2!3 N
Corst= ANV P(,q9; K) (23)
where P(¢, 9; K) depends on the form of the solution f(¢, )
for the particular family of profiles treated.

LIFT COEFFICIENT

The lift [ of the body is given by

1= @)tz

By 2 similar procedure, as in the derivation of equatioh (23),
the lift coefficient is given by

- ! a¥? _
L g o™ (24)

where

L®)= " P 0; K0

and where for an extiremely thin straight-line profile the
thickness coefficient ¢ has been replaced by the angle of

attack a.
DRAG COEFFICIENT

The pressure drag d of the body is given by the following

expression:
d=2 J:. (p),,_,g(%)t dx
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Hence the drag coefficient is given by

e
%poUz(za)"_'(,Y_l_l)m (K)

Ca= (25)

where

pw=2" o@PE 0B

ADDITIONAL CONSIDERATIONS

The results derived in the present paper apply to two-
dimensional near-sonic flows past thin shapes. . Such flows
have been calculated for a family of symmetrical shapes
with cusped leading and trailing edges (reference 4) and for
8 family of elliptic cylinders (reference 5). These calcula-
tions are valid at least up to the critical stream Mach num-
ber M,. The critical Mach pumber may be considered

from two points of view. First, it may be considered to

denote the lower limit of a mixed subsonic-supersonic flow,
that is, where the imbedded supersonic region is simply the
point of maximum fluid velocity at the surface of the solid.
From this point of view, according to equation (17), a
critical value of the similarity parameter K can be defined.
Thus

1—M,,

TR

This equation can also be written in a form that yields the
critical stream Mach number for a given family of shapes;
that is,

- (26)

M.,=1—K, [(++1)t]¥*

Second, the critical-stream Mach number mey be consid-
ered to denote the upper limit of the purely subsonic range
of speeds. This point of view suggests a derivation of equa-
tion (27) by means of the Pr andtl-Glauert sma.ll—pertm bation
method (reference 6). The procedure is as follows:

The relation between the local and the undisturbed-stream
Mach number, within the approximation of the small-
disturbance theory, is given by

M. )]

where %’ is the disturbance velocity and U7 is the undmturbed—
stream velocity.

By definition, M=1 for M.=M,, and, gince C, M, ——25—
approximately, equation (28) becomes - : :

1=M,} [1—0,, x,, (1 +q%1 Mn’)]

The relation between C,, u,. and the pressure coefficient 0, ,

of the incompressible fluid is given by the Prandtl-Glauert
rule

(27)

M=M, 2|:1+2—U(1+ (28)

(29)

C = 01’.0 e s
"Me— ToMa

Hence equation (29) becomes
(1 AI 2)8/2
M (14757 M,

I —

#90 (30)

As seen from equation. (29), 1—A£,2 is of the first order in the
small perturbation «’/U and, accordingly, equation (30}
includes terms of higher order. This fact can be scen hy
rewriting equation (30) in the following form:

(1— M., 2%
T p—a-ma | 1-1 a-H =)]

Then, to within the lowest order in the small perturbation,

2
1—M,?2 _'Zi.l'_l

or, approximately,
M=1-3(- 7+10 o)

It is quite easy to show the connection between equation (31)
and equation (27). Thus, for an incompressible fluid, the
pressure coefficient is given by

81

Co=1—fa - (32

where ¢ is the magnitude of the fluid velocity at any point in
the field of flow.

In the case of the family of shapes of reference 4, the maxi-
mum velocity at the surface is given by

g 413,
o 'U_1+_2t+ PN
Hence -
Coo=—38t+ ... -

and equation (31) becomes
1/8
Mo=1—(3) [+ Dgee (33)

In the case of the family of elliptic eylinders of refer-
ence 5, the maximum velocity at the surface is given by

q_
=1+t

~Hence -

Og,q=—2t+ ¢ s

and equation (31) becomes o

Mo=1—3 [+ 1)1 (34)
An expmination of equations (33) and (34) suggests that
K., possesses a limiting value; that is,

1—M,

K= 13 GFDIP

(35)
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It is noteworthy that the value of (X.,),,_ depends on the
family of shapes, although in the limit +—>0 the profile in
every case is a straight-line segment. The numerical values
of (K.),,, shown in equations (33) and (34) represent, how-
ever, only the effect of the Prandtl-Glauert or first-order
term in the power-series development in ¢ of the meaximum
velocity at the solid surface. It is rather surprising that the
higher-order terms involving the higher powers of # also
contribute to the value of (K;),,.. The procedure is simply

to replace the maximum velocity by the critical speed; that is,

(0)-)-()
Umu U 7+1ﬂ_[2
or
1+7 L ar,2\”
'Y_'I‘I_—z =14aitati+taf+... (36)
2 M.

where @y, a,, a;, .. . depend on the given family of shapes and
involve only v and Af,,.

Then as suggested by equation (26), when 1—A3f,2 is re-
placed by 2K, [(v+1)i]*?, equation (36) is identically satis-
fied for t—0, with each additional higher-order term con-
tributing to the value of K. In this fashion there are
obtained, successively, linear, quadratic, cubie, and higher-
order equations for the determination of (K,,),,,.

The foregoing considerations have been applied to the
family of symmetrical shapes of reference 4 and to the family
of elliptic cylinders of reference 5. The values of K., for

TABLE I .

VALUES OF K.. FOR THE FAMILY OF SYMMETRICAL

SHAPES OF REFERENCE 4
[For alr, v=1.4; for Freon~12, y=1.136]

M. Ko
3 Approximation Approximstion’
First | Becond | Third First | Seecond | Third
Alr
1] 1.000 1.000 1.000 0. 655 0.717 0.738
.002 . 982 .880 .87 . 647 .710 .782
. 005 . 967 .963 . 862 .638 .05 726
.010 .47 .42 540 .632 . 700 .79
. 040 872 .859 .85¢ .808 .675 . 696
.060 837 .818 .812 . 595 684 . 685
. 080 807 . T84 T4 .581 . 650 .878
100 781 753 T3 . 568 . 639 . 685
Freon-12

0 1. 600 1. 000 1.000 0. 655 0.717 0.738
.002 .983 . 981 .980 647 713 . 736
005 -968 . 968 064 642 709 . 780
.010 .91 . 946 044 . 638 . T4 725
020 924 018 .912 .627 . 604 .716
.40 .88t 867 . 863 .812 . 682 .08
. 060 .848 830 .823 .600 . 670 608
.080 .810 797 . 787 .588 . 668 .601
. 100 .4 769 . 756 576 847 . 682

values of ¢ different from zero were obteined from equa-
tion (26) with the required values of Af,, determined by means
of the theoretical results of references 4 and 5. The limiting
values of K, were obtained from equations corresponding to
equation (36). Tables I and IT show the results of these
calculations for air and for Freon-12. Note the approach
to the limiting values of K, as { approaches zero and Af,,
approaches unity. The first column of velues of K, shows
the effect of the first-order or Prandtl-Glauert term; the
second and third columns show, respectively, the effects of
the second-order and third-order terms in the thickness
coefficient £. The successive values of X,, for the various
values of the thickness coefficient  indicate good convergence.

LaNGLEY MEMORIAL AERONAUTICAL LABORATORY,
NatioNan Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Fiep, Va., December 9, 1947.
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TABLE 1II

YALUES OF K, FOR THE FAMILY OF ELLIPTIC CYLINDERS  ~

OF REFERENCE 5
[For alr, ym1.4; for Freon-12, y=1.136]

Mer Her
4 Approximation Appeoximation
First | Sccond | Third | First | Secand | Third
Alr
0 1.000 1. 000 1. 600 0. 500 537 0. 556
. 005 074 672 71 .490 626 544
.010 . 960 987 . 955 487 .522 .887
.020 .936 €32 . 830 .481 515 528
040 .00 -804 .892 .470 . 505 515
080 .873 .863 . 861 .462 497 . 507
.080 848 .837 .833 . .490 500
.100 827 813 808 47 484 .404
Freon-12

a L 000 1.0C0 1.000 0.5¢0 0. 537 0.558
.002 087 .88 085 . 497 534 553
. 005 976 974 973 485 532 .350
.. 010 962 .959 .58 401 .528 543
.40 . 008 .900 . 809 474 509 52
. 060 .881 872 .87 .469 504 . 513
.080 .858 847 845 .462 .406 - 506
.100 .838 .82 .822 435 .488 .408




