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THE FLOW OF A COMPRESSIBLE FLUID PAST A SPHERE

By Carl Kaplan

SUMMARY

The flow of a compressible fluld past a sphere flxedj*”
in a uniform stream isg calculated to the third order of
“‘approximation by means of the Janzen-Rayleigh method. A
- The velocity and the pre¢gure distridbutions over the surs:

- face of the sphere are computed and the terms 1nvolv1ng ’
~~the fourth power of the Kach number, neglected in Rayleleh*
”calculptlon, are shown to be of considerable importance as.
“.the local velocity of sound is approached on the gphere.,
- The eritical Mach number, that is, the value of the Mach
number at which the maxvmum velocity of the fluid past the
sphere is just equal to the local velocity of sound, - is
calculated for both the second and the third approximg-
- tions and is found to be, regpectively, M, = 0.587 and
Moy = 0.573, : T

INTRODUCTION

: The irrotatlonal flow of .4 combreq31ble fluld pai
cireular. cylinder and a sphere W?S first calculated by
"Jenzen (reference 1) and by Rayleigh (reference 2),
" method .consisted in obtaining ‘a correction term’ to
‘compressible-fluid solution, but the results were limited
" 'to the terms involving only the square of the Mach number.‘
Recently, the author (reference é% and Imai (reference.
extended the calculations for the circular cyllnder:b .
“eluding the terms involving the fourth power -of the Mach
~number, These higher- “power terms, neglected in the ear-
S lier calculations, were found to be of con31derablelimpar4ﬂ
“tance as the local velocity of gound is approached 6n the
'surface of the cylinder, .It has therefore been thought

~worth while to extend the calculations in a s1mllar manner;f
~for the flow past a sphere. :
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ANALYSIS

Ereliminary developments.~ The flow is assumed to be
uniform at a great distance from the sphere and the mo-
tion to be everywhere irrotational and steady. -Then, with

C8 = ég '(ly
ap

the equations of motion reduce to

5 dp 1 2 K SRR S

8 2 L= . . . 2 }

S 2xd(v ) o ;‘ )
where v is the fluid velocity; ¢, the local velocity

of sound; 1p, the pressure; and P, the densgity. Then,
assuming the adiabatic relationship between p and P
.1t follows by integration of equation (2) that

1l _a Y b 1 .2 Y P .
=W o ———— = 2 [ et — : 3)
2 Y ~-1p 2 Y - 1 P, ‘,(

and from equation (1) that
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where U is the velocity of the undisturbed étream;_gpo,ﬁ
96, and ¢,» the corresponding quantities in the undig- »
turbed stream; M (= U/cy), the Mach number; :and Y, - the -
ratio of the specific heats of the fluid. SNSRI ‘
‘ Since the fluid motion is irrotational, there exists
& velocity potential ¢ and the equation of continuity
may be written as R

2 -2 2 o 2 : 2 R R
DpL gL (o, e, A o) gy
dx® 3y*© dz 2c S
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Let r, 6, and @ denote svace polar coordinates and sup-
Pose the origin of r to be at the center of a sphere of
radius =a and the initial line of 8 to be parallel to

the direction of the stream. Then, designating by 1r the
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v/U
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A
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Since

_then

where

r/a,

and taking into account the fact that the flowsg in
all meridian rlanes
(5) becomes

P
R
B

N

N.A,C.A., Technical Note No. 762

by ¢ the ratio

$/Ua

and, by v the raﬁio

® = constant are similar, equation

%% (1 - va)] Af =

1 87/
fﬁ ar

8 ‘

oW

M o= cos’e

now assumed that ¢4 can be developed as a power
M%  (reference 4) so that

a2 2
2 a8 2 @é)-
voE <ar T e EY:
ve =y B 4 v, M2+ w2 u* o+ .., - (9)
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:When*the‘e expressions for ¢ and v2 are inserted ‘4nto
equation (6) and the coeffic ients of the same powers of M
on both sides are equated, T :

4o =0 - © (10a)
;A#; - 3(e e L 2% 2%’y | O Gow)
f?;: ; :A¢§ = 1~§~l V.2 - l)A¢;.+ (ffg ff;_ + i; %é; %%?~>
+3(Sh org? & éfi 93;§> “(106)
2\ar T3r " ¥ 36 ae :

e . LR LIS |

‘From these equations, any %iven approx1mst10n ¢n clearly

depends only on the Preceding approximations of which. the
first one is the solution of Laplace's equation A¢o =
for an incompressidble fiuid. ‘

The first Qpbrox1mat10n.~ Equation (10a) is the dlfw‘
ferential equation for the velocity potential ¢, for tne

flow of an incompressible, nonviscous fluid and may be
Twritten as

3 (p2o\, 3 [, ard,7
g; /I' -~~~-—-- + [(1 - ) 5_{&”] =0

his equation is known to be

e

o

%0 = 3 \Anrn + ~—*—> P, (u)

where Pp(u) is Legendrg’s pblynbmial ef ofder n  and
Ay and B, are arbitrary constants. In the case of a

sphere of radius &, supposed fixed in a stream of uni-

form velcecity U, +the boundary conditions to be satis
fied are as follows:

. %%

37 normal velocity = 0, at the surface of the
sphere
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and
—2 = = cos g, at infinity

These conditions limit the forn of the solution to

]

b0 <Alr + E%) cos B
r

where cos 8 = Pi(u). Inserting the boundary conditions,

4, =1 and B, = 1/2
‘and, therefore, S -
(e k) R
¢O = \I' EI‘?/ Plf(u) ( 1)

| The second apvroximation.- From equations (11) and
(9a), it follows that
~6> w2

-5> P,

“Then, by a simple calculatlon it is found from equatlon
' (lOb) that

el
g

Vo2 = 1 + r=° + % r—8 4 <—3r”3 +

or since Po(u) =1 and B (u) = g neE -

ol ol

vE = <? +-% r"6> Py (u) + <~2r”3 +

s

-7

-1l0
4, = <~4%§ r o+

r Py (W)

o

~a 12 . 2 10
+ <3r - g T L T >P5 (Uv)

“where

B, ()

i
folen
=
. ot
1
rofea
©

Yow, s particular integral of the equation
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Hence, the solutimn is given by

o0

f = Em[Anrn + Bppm(nha)
n=U

phta - )
(m+2) (m+3) ~n(n+1)] nih

(13)
except when

m=n=-2 or m=—- (n +. 3)
, Aécordingly, the solution of eguation (l?) is

-2 -4 :
fo = (Air + Byr7 )P (u) + (Aurs + Br )P, (u)

+ (-% " ° 514: r"?Pl ()

3 - A -5 3 - >
e a . .5 R R 3 )P
< 10 © 10 © 17 ¥ )% (W)

Since ¢o already satisfies the necessary boundary condi-
tions of the broblem, the higher approximations. frw

42+ ... nmust satisfy the conditions
3 )
_fL = 0, *fé = 0
or

ar Y L

for both r =1 and r =, Hence, after a simple caleuw—
lation, ‘

\

: 1 27
Ay = Az = 0 ang By = Zy Bz = pxy
Thersfore,
$1 o= (L =2 _ 1 5, 1 __
ﬁl = 3 r - g P ';;*4- r 8) Pl (u)
3_ -2 27 -4 3 -5 3 a> (1)
< 107 T T s T 10 © 176 5 (1) (14)

The third apnroximation.~-Substitutiné from equations
(92), (9v), (11), and (12) into the right-hand side of

equation (10c¢), it follows after a straightforward caleu-
lation that ‘ : '
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boundary conditlons r vt O for both r=

oy 11178 11178 =12 27441
1920 ) 1543
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Tne compbte solutlon of thls equatlon is obtained by means of equation (13) together with the

?52. = (¥ “l)[< 70 r

+ (- = “54’—__.w
(»10r

3 800

114 23

~14
o T )BM)

'~+ 85512 Fe PE(“)]

1 and r=o and,is Las follows: -
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where

1 = 0.03586(Y=1) + 0,%2814

jos}
e}
il

0,02268(Y=1) + 0.74107%

t
Gt
il

~0.18261(Y~1) + 0,.,21216

From ecuations (11), (14), and (15),
calculated that the velocity o
of the sphere is given by

g
g

it may be easily.
f the fluid at the surface

3 ft
(o3 1aY,
ol

L sin 8 + -1 (989 gin 68 - 1215 sin 30 )u®
: 7040 ,

‘-

+ (0.10572 sin8 ~ 0,16008 sin 36+ 0.06434 sin 50 YM%
+ (¥-1)(0.01168 sing = 0.02475 ein 36+ 0.02587 sin 50 )u*

The appropriate value of ¥ for air being Y = 1,408, this
equation can be written ' R

-.3:_5.2/ -._':3_ ] | l__.___ o) «d - ~ . ,Ze 2 ' [
" 236 %5 sin 6 + T (989 gin 6 1215 sin 3 )M; :

- o
+ (0.11048 sin @ - 0,17018 sin 38+ 0,07489 sin 58)M + ..

| (17)
The critical value of the Mach number for the ‘ '

Sphere.~ When the velocity of the fluid equals the velécity}
of sound at any point in the field, a change in the tvpe - .
of -flow occurs and votential flow may no longer exist. It
'will, therefore, be of interest to determine the value of
U/eys  at which the velocity of the fluid just equals7rhécf‘_y
“loegl velocity of sound in the field of flow past a sp Bre, o
This velocity is first attained on the sphere at the point
of minimum pressure or of maximunm velocity. 4According to.
equasion (17), with 6 = n/2, the variation of the m

omum velocity with the Mach aumdber M(= U/ec,) is given’t

Vmax = 1.5 + 0.31307¥% + 0.35555 nt .

“an ?:iB)"
Ndw, designating by ¢* the velocity of sound at a__
point where the velocity of the fluid is equal. to the low
cal velocity of sound; that ig, a2t a point where
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it follows from equation (4) that

%=yt (e ) o (ae)

It is to be noted that.this equation 1s essentially
Bernoulli's equation and does not depend on the shape of
the body immersed in the flunid. :

: In conformity with the usage in this paper, c¢* ig
‘replaced by %j (= v*) and the equation (l9)_bebames

2 __2 1 ,Y-1 20y

The so~called critical value of U/c, (= Mep) for the |
flow past a sphere is then obtained by putting vmaxﬁ? v*g;
Tables I and II show, respectively, the values of Ynax B
and . v* calculated from equations (18) and (20) for vari-"
ous values of the Mach number. These values are alse shown
"in figure 1, and the points at which the curves intersect
give the corresponding values of the critical Mach numbed
Mgope The critical values are, reaspectively, for the sec—
-ond. and the third approximations, Mop = 0.587 and Mgy ="
04573, The corresponding critical values of M for the
~case of an infinitely long circular cylinder are Mgap = .
‘““0f420 and Mgy = 0,409 (reference 3). BRI

. ~ The velocity and the pressure distridbutions.~ If pg, -
Po, and Co are the pressure, the density, and the #eldcé ;;3
ity of sound in the undisturbed stream, then the‘deﬁsity'@{ﬂf
P of the fluid at a point where the velocity is v 'is

- given by S i SRR

RN

Py Y =12, 2y [Y-4
A P

vfand»the pPressure p .at this point is

| y |
N = §~> = [l g Me(1 - Vg?} (22)"
\ 0 o TR
or ' ’
P ~ Py 1 I
1 2 Ty 2{‘3‘»4'
5 ey U 5 M L
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For an incompressible fluid, . M = O and expression (23)
reduces to

b -~ P :
3 Po ¥

and, for a compressible fluid with Y = 1,408 ana Mi:
0. 57

e o ‘ . . . . 5.45
2 4.572.{[1.+ 0.06628(1=v2)- ~ 1} (241)
Lo, u? L I ' o
2 0 :
The values of ¥ to be used in equations (24) are ob-
tained from equation (17),. . Thusg, for the incompressible
fluld |
v=13%sin8 -(253);

.and for the second and the third approximations to the
compressible.fluld with M = 0, 57,.

t

v = 1.,54564 sin § - 0.05607 sin 38 (25%)

1.55731 sin 6 - 0.07404 sin 38

v E
o+ 0. 00791 31n 59 : 15(°5c)*

1]

_,Table III lists the values of v computed from these
‘formulas and table IV zives the corresponding values of

T=———=2_ obtainéd from equations (24)., TFisgures 2 and 3

: show, resnectlvely, the graphs. of the velOCIty and the;
-Pressure distributions of tables III and IV.

:Lan%ley Memoriai'Aerdn utlcai Labora atory,
National Advisory Committes for Aeronautics,
Langley Field, Va., May 4, 1940.
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v

mn.x

e s e i caate g et

Second g .~ Third
approximation approximation
0 1.5 1e5
Wl 1,5qo51 1.50317
o2 lebl2E52 1.51309
.3 1.52818 1.53108
o4 1.55009 1.55919

«5

o7

1.57827
1.61271

1.565%4

'1,60049
1.,65878

173877

TABLE II
M| 0.1 0.2 0.3 0.4 0.5 0.6 0.7
v*|9.1228 | 4.575% | 3,0656 | 2.3152 | 1.8686 | 1.5737 | 1.3655
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Incompressible

v

aPProximatiOn

Second

_ Third
approximatio

n‘

0
132074
.26048
.38823
.51303
. 75000
«96419

1.14906

1.29905

1.40954

l.47722

vi.49429

1.50000

0
12021
24036
.86039
.48008
+71675
. 94498
' 1,15599

1.33857

1.48046

157073
1.59392

1060172

0

'iiQQIiﬁ{

23946

.35835

70857

.95420}:

l.l485i? _yf 

1’34ié3 ‘

1.49903 -

_1.602é5 L;;
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-1.18216
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Fige.1,2,3
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. Figure 1.- Critical value of the Mach number for a sphere.
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Figure 2.- Velocity distribution on
: the surface of a sphere.
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Figure 3.- Pressure distribution on:
~the surface of a sphere.




