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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1527

ON SIMITARITY RULES FOR TRANSONIC FIOWS

By Carl Kaplan
SUMMARY

A method used by Tsien to derive simlilarity rules for hypersonic
flows is utilized to derive von KdxmmAn's similerity rules for transonic
flows. A slight generalization is introduced by the inclusion of 1y, the
ratio of specific heats, as a parsmeter, At the lower limit of the
transonic region of flow the theory ylelds a formula for the critical
stream Mach numbers of a given family of symmetrical profiles. It is
further shown that this formula can also be obtained by means of the
Prandtl-Glauert small-perturbation method. Investigation of the behavior
of the similarity paremeter in the region where the thickness coefficlent
approsches zero end the aeritical stream Mach number epproaches unity
shows that 1t possesses a limlting value characteristic of the prescribed
family of shapes,

INTRODUCTTION

The rigorous solution of the subsonic flow of a compressible fluid
past a prescribed closed body thus far has proved to be of insurmountable
difficulty. As a consequence of this difficulty the emphasis has been
placed on the establislment of a correspondence between the flow past a
given body in an incompressible fluid and the same body in a compressible
fluid. Among the best kmown results of this mode of attack are the
Prandtl-Glauert rule and the von Kdrmén-Tsien velocity or pressure correc—
tion factor — both based on some form of linearization of the fundsmental
nonlinear flow equations. None of the methods based on the linearization
of the flow equations, however, can yield correct results in the transonic
range where the flow is partly subsonic and partly supersomnic. For this
case a certain emount of the feature of nonlinearity of the flow equations
must be retained in order to obtain useful and nontrivial results. In
the present paper a detailed derivation is given of the transonic similarity
rules recently given by von Kadmmén (reference 1).

FUNDAMENTAL EQUATIONS

In plane steady flow the equation governing the flow of a nonviscous
compressible fluid can be written in the form
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(cg~u2)%—uv(%y§+% + (cg—vz)g—;’:=0 (1)

In the derivation of this equation the pressure is assumed to be a
function of the density only. If further, the motion is irrotational,
then

2 -0 (2)

Here u and v are, respectively, the component velocities along the
Cartesian x— and y—axes and ¢ 1s the local velocity of sound given by

c2 = ¢cg? - 7-'5'—;(112 + v2) (3)

where ¢ 1s the velocity of sound at a stagnation point u =0, v =0
and vy is the ratlo of specific heails at constant pressure and constant
volume .

Equation (1) is far too camplicated to afford an insight into the
properties of potential flow in the neighborhood of Mach mmber unity.
The discussion is, therefore, restricted to the flow past a thin profile.
Thus, at first v 1s assumed to be small in comparison with the sound
velocity c¢g. Equation (1) is then simplified to

2
1231
2 g(?é Ju . dv
+ =0 (%)
¥ 1 u ox E'y_
1 - L= o
2 002 -

By the introduction of the sound velocity for which the local fluid
and sound veloclities are equal

2
* =
c 7+lCO | (5)

and of the maximum possible fluid velocity -

qma.x=vyflco (6)
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equation (4) becomes

1 B2
) 2 ax+ay (7)
- 2

Unax

It is desirable to simplify this equation still further but yet to retain
those features which yield nontrivial and useful results. Thus,

if it i1s assumed that u is of the order of the critical velocity o*
and if only terms up to the order 1 - lc&; are retained, then equation (7)

can be written as

—(7+l)(u—0*)g§+c*%:;=0 (8)

Thus far the irrotationality condition, equation (2), has not been
used. If, now, the undisturbed stream pest a slender body is of velocity
U slightly different from the velocity of sound and in the direction of
the positive x—exis, then, according to equation (2) and the assumptions
leading to equation (8), a velocity potential ¢ can be introduced with

o = ctx + (1 - Mo (9)
where M* = E‘-’; and (1 - M*)p 1is the disturbance~velocity potential.
Then
9
w= R =y (.'1.---I\fI”")--a~CR
0 (10)
and equation (8) becames
- +1)1..m*&§&;;+ x 990 _ o 11
Y ( )am - c 552 (11)

Equation (11) is a nonlinear simplified form of the /fand.amental differential
equation (1) and has been treated recently by von KArmén in connection with
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similarity rules in two-dimensional transonic flow (reference 1).
Equation (11), when expressed in hodograph variables, is of the type
treated by the Italian mathematician F. Tricani some years ago (reference 2).

DERIVATION OF SIMILARITY CONDITIONS

Recently, Tsien (reference 3) derived similarity rules for hypersonic
Tlows where the fluild velocity is much larger than the velocity of scund.
In the present paper the same procedure is employed to derive similarity
rules for transonic flows where the fluld velocity is very mearly that of
sound.,

According to the assumptions leading to equation (1l), it is implied
that the solid body i1s thin, possesses no stegnation points, and the
velocity of the fluid 1s everywhere in the nelghborhood of the local
velocity of sound. Now, suppose the profile of the obstacle to be
symuetrical with respect to both the x— and y—axes and to possess cusps
at both the leading and the tralling edges. Such profiles with uniformm
flow in the direction of the long exis—of-symmetry x fulfill the
assumptions leading to equation (11). The flows past these profiles are
said to be similar if the equation of motion (11) and the boundary
conditions can be expressed in nondimensional variables in such a way
that only a single constant factor is involved. Thus, if 22 is the chord
and 2Zb 1s the maximum thickness of the body, then the following
nondimensional variables are Introduced:

X

it

at
a(y + 1)t

(12)

i

y

where t =§- and m and n are exponents yet to be determined. It is

clear that the nondimensional quantity involved is the thickness coeffi-—
clent t since this quantity determines the magnitude of the disturbance
velocities. The exponents m and n are to be determined in such a way
that the same constant factor appears in both the equation of motion and
the boundary conditions.

The appropriate nondimensional form for the velocity potential ¢ is

¢ = ac*f(&, 1) (13)

By substitution from equations (12) and (13), the equation of motion (11)
becomes
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_ omel, . on yr o 2¢ _ ,
(y + 1)1 - m*)t aga_gé'+%1'\? 0 (1k)

The boundary conditions at infinity require that the flow velocity
be U. Hence, from the first of equations (10),

3 )
30 (at o)
S 0

The boundary condition at the surface of the slender body is
(1 - %) = c*g(zc-)t (at y =0, a<x<a)
oy 2,

where g(’-ai) describes the distribution of slope along the surface of the
body.

By means of equations (12) and (13), the boundary conditions can be

written as:
~

of - 1

o (2t o)
o , (15)
on

]
o

(7 + 1)1 - ) ™1 ébﬁf' -g(t) (at n=0, -15¢51)

A comparison of the differential equation (1L4) and the boundary conditions,
equations (15), shows that a single paremetér is involved if

2n =—(n+1) or n=-—

W

om 4 lz=—M Or I = —

W

that is,
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(y + Y31 - w)~2/3 = x

The undisturbed-stream Mach mmber M, = Y can be introduced in

(-]

the following way:

The general relation between M¥* and M 1is

1.0 1/2
.
M* = (16)
1+Z.:2‘—lmm2
or
: 1/2
", 1-(-m)fe— (1-m)]
l+7;l(l—M*)[2—(l-M*)]

Then, if powers of (1 — M*) higher than the first are neglected,

2

1 =Mt =
v+ 1

(L=My) + o o o

Therefore

t]~2/3 =K (17)

(1 - M) [(7 + 1)

The results obtained thus far are such that by means of the substitution

equations
-
x = at
- -1/3
7 =ally + 1)t} 72y | (18)
= &C*f( €, TI)
K= (L-1) [y + 13

o

the differential equation for f(&, n) and the boundary conditions become:
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D2F _ o Of 32 1
3112 a§5§2 (19)
and 3\
of _
8 =t
(at =)
o _ o L (20)
o
a%w(g) (at n=0,-1g¢€1)
.

The meaning of the similarity rule implied in the definition of the
paremeter K 1is the following:

If a series of bodies having the sams distribution function g(&)
for the slope but different thickness ratios + are placed in flows of
different undisturbed-stream Mach mumbers M, and different values of 7,

1My 27 remains constant, then the
[(r + 1)¢]

flow patterns are similar in the sense that the same function f£(&, n)
describes the flows,

such that the parameter K =

RESULTS DERIVED FROM THE SIMIIARITY RULE

Pressure Coefficient

In the case 6f a uniform flow past a fixed boundary, the pressure
coefficient 18 defined as

_P-D
-CI’JM«:»'-'--.._-"'m

2
JépU

where P, and P, 8re, respectively, the pressure and density in the
undisturbed stream and the static pressure p in the fluid is given by

U2

A
P=p [1 - Z—--—JM; wa(___....“z £ v2 1>] 7-1 (21)
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Then

c =2 1 123 .‘f..‘*.’..l’.a._]_ ;ﬁ (22)
P:Moo'-7M“§ -+ - 2 .o U2

By means of equations (10) and (18), if powers of (1 — M_,) higher than
the first are neglected, the following result is obtained

b 1-M./ ot

or
2/3 :
1 4
c = P(¢, n; K) (23)
PMe "y 2y s DB k

where P(¢, n; K) depends on the form of the solution £(¢, n) for
the particular femily of profiles treated.
Lift Coefficient

The 1lift 1 of the body is glven by

1= f(P)TF__O ax

By a smilar procedure, as in the derivation of equation (23), the lift
coefficient is given by

1 1 oc2/ 3

- - 1(x) (2)
Lo0%(2a) M2 (y + 1)1/3

¢

where

1 ,
L(K) = f P(e, 0; X) dt
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and where for an extremely thin straight—-line profile the thickness
coefficient t has been replaced by the angle of attack «a.
Drag Coefficient
The pressure drag d of the body is given by the following expression:

a
a=ce f (B) oo 8B ax
e,

Hence the drag coefficient is given by

d 1 /3

= D(K) (25)
L v3(ea) 12 (y + 1)Y/3

C =

where

1
D(X) = 2f g(e)P(e, 0; K) dt

-,

ADDITIONAL CONSIDERATTONS

The results derived in the present paper apply to two-dimensional
near—sonic flows past thin shapes. Such flows have been calculated
for a famlly of symmetrical shapes with cusped leading and trailing
edges (reference 4) and for a famlly of elliptic cylinders (reference 5).
These calculations are valid at least up to the critical stream Mach
number M,p. The critical Mach number may be considered from two points
of view. Flrst, it may be comsidered to denote the lower limit of
a mlxed subsonic—supersonic flow, that is, where the imbedded supersonic
region 1s simply the point of maximum fluld velocity at the surface of
the solid. From this point of view, according to equation (17), a
critical value of the similarity parameter K can be defined. Thus

= 1My 6
for [(y + 1)§]2/3 (=)

This equation can also be written in a form that ylelds the critical stream
Mach number for a given family of shapes; that is,
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2
Mox = 1 = Ko [(r + 1)t]?/3 (27)
Second., the critical-stream Mach number may be considered to denote the
upper linit of the purely subsonic range of speeds. This point of view
suggests a derivation of equation (27) by means of the Prandtl-Glauert
small-perturbation method (reference 6). The procedure is as follows:
The relation between the local and the undisturbed-—stream Mach

number, within the approximetion of the small-disturbance theory, is
given by

2 M2 [1+2%'-(1+3'—:2:—314,,2)] (28)

where u' 1s the disturbance velocity and U is the undisturbed-stream
velocity.

By definition M =1 for M, =My and, simce Cpy = -2%'-
[- ]
approximately, equation (28) becames

1= Mp® [1 — Cp, Mgy <1 + 7—;5-5'%%1?)] (29)

The relation between Cp, Moy and the pressure coefficient Cp o
of the incompressible fluid is given by the Prandtl-Glauert rule

-0

Y
P,Mcr \,l - I&cré

Hence equation (29) becomes

o _Mcr2)3/2
Mcr (l + Z'—"l'Mc )

(30)

As seen fram equation (29), 1 - Mcr2 is of the first order in the small
perturbation Pﬂ.— and, accordingly, equation (30) includes terms of higher

order. This fact can be seen by rewriting equation (30) in the following
form:
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(lecr2)3/2 -, 0
0o ]porsteowa]

Then, to within the lowest order in the small perturbation,

1- M2 = (— L‘-;—!’Cp,o) °/3

or, approximately,

)2/3 (31)

- X +
Mo = 3= 3( =~ T 05,0

It is quite easy to show the connection between equation (31) and
equation (27). Thus, for an incampressible fluid, the pressure coefficient

is given by

2
CP,O =1 —'[g]'hé (32)

where ¢ 1is the magnitude of the fluid veloclity at any point in the
fleld of flow,

In the case of the family of shapes of reference 4, the maximum
velocity at the surface is glven by

S=l+'3t+eoo
U 2 .

Hence

cp,0=—3t+ s 5 #

and equation (31) becomes

Mop = 1— (3% )1/3 [(7 * 1)t] /3 (33)
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In the case of the family of elliptic cylinders of refersnce 5,
the maximm velocity at the surface is given by

%=.1+’c
Hence
P’O='—'2t+a s @

and equation (31) becomes

Mcr=1_.-‘2L[(7+1)t]2/3 (34)

An examination of equations (33) and (34) suggests that K,
possesses a limiting value; +that is,

(X ) = 1im 1 - Moy
cr/lim ko0 [(7+1)t] 573 (35)
Myp =1
It is noteworthy that the value of (Kcr)lm depends on the femily of

shapes, although in the limit + -+ O +the profile in every case is a
straight-line segment. The mumerical values of (Kcr)].j_m shown in

equations (33) and (34) represent, however, only the effect of the
Prandtl-Glauvert or first—order term in the power-series development in t
of the maximum velocity at the solid surface, It is rather surprising
that the higher-order terms jinvolving the higher powers of t also
contribute to the value of Kcr)lim' The procedure is simply to replace

the maximm velocity by the critical speed; that is,

- 1/2
(3™ (8 (s

or

=l+alt+a,2t2+a3t3+e o (36)
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where aj, ao, 835 + o o depend on the given Tamily of shapes and
involve only 7y and Mgy.

Then as suggested by equation (26), when 1 — Mbre is replaced by

Kop [(7 + l)t] 2/ 3, equation (36) is identically satisfied for t - 0,
with each additlonal higher—order term contributing to the value of K,y

In this fashion there are obtained, successively, linear, quadratic,
cubic, and higher—order equations for the determination of (Kcr)lim'

The foregoing‘considerations have been applied to the family of
symnetrical shapes of reference 4 and to the family of elliptic cylinders
of reference 5. The values of K;, for values of t different from

zero were obtained from equation (26) with the required values of Mgy
determined by means of the theoretical results of references 4 and 5.

The limiting values of K,, were obtained from equations corresponding
to equation (36). Tables I and II show the results of these calculations
for air and for Freon—l2. Note the approach to the limiting values of
Kcr as t approaches zero and M., approaches unity. The first column

of values of X,y 8hows the effect of the first-order or Prandtl-Glauert
texm; the second and third columms show, respectively, the effects of the
second—order and third—order terms in the thickness coefficient +. The

successive values of Kg;p for the various values of the thickness
coefficient t Indlcate good convergence.

Langley Memorial Aeronautical Laboratory
National Advisory Cammittee for Aeronautics
Langley Field, Va., December 9, 1947
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TABLE I

VAIUES OF K., FOR THE FAMITY OF SYMMETRICAL SHAPES OF REFERENCE 4

[For air, ¥ = 1.4; for Freon-12, 7 = 1,136]

MGI‘ Kcr

t Approximation Approximation

Pirst Second | Third First | Second | Third
Air

0. 1.000 |. 1.000 | 1.000 0.655 0.717 | 0.738
.002 .982 .980 .979 OLT .T710 .732
.005 .967 .963 .962 .638 .T705 .726
.010 .9L7 .9L2 .940 .632 . 700 .719
.020 .918 .909 .906 .62k .689 . 709
.0ko .872 .859 .85k .609 675 .696
. 060 .837 .818 .812 «595 . 664 .685

.080 .807 .78k STTh .581 .650 .678

.100 .781 .53 Th3 .568 639 .665
Freon-12

0 1.000 1.000 | 1.000 0.655 0.717 | 0.738

.002 .983 ©.981 .980 < OUT .713 .T35
.005 .969 .966 .96L L6L2 .T709 .730
.010 951 946 Olik .636 . TOU .T25
.020 .92k .915 .912 .627 . 694 .T16
.040 .881 867 .863 612 .682 .

. 060 .848 .830 .823 .600 .670 .698
.080 819 <797 .T87 .588 .658 .691
.100 Tk .T69 .T56 576 .6L7 .682

NATTONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE IT

NACA TN No. 1527

VALUES OF K,,, FOR THE FAMIIY OF ELLIPTIC CYILINDERS OF REFERENCE 5

[For air, ¥ = 1l.4; for Freon-12, 7 = 1,136]

Mcr KOI‘
t Approximation Approximation
First | Second | Third First | Second | Third
Air
o} 1.000 1.000 | 1.000 0.500 0.537 { 0.556
.002 .986 985 .98 4ok .530 .550
-005 Reyd 972 971 «490 .526 .5hh
.010 .960 957 «955 U487 522 .537
»020 .936 «932 .930 .481 +515 .526
.0lL0o .901 894 | 892 470 «505 .515
»060 .873 .863 .861 o162 497 »507
.080 .848 .837 .833 455 .490 .500
.100 827 .813 .809 ¥l »48L gl
Freon—12

0 1.000 1.000 | 1.000 0.500 0.537 | 0.556
.002 987 .986 .985 1497 .53k .553
«005 .976 9Tk 973 495 «532 -550
»010 .962 «959 .958 9L .528 .543
.020 941 .936 2935 L84 .520 .534
~0LO .908 .900 .899 JUTh .509 .502
.060 .881 872 871 1169 »50k .513
.080 .858 847 ~845 62 496 .506
.100 .838 .826 .822 155 . 188 . 198

NATTONAI, ADVISORY
COMMITTEE FOR AERONAUTICS





