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REPORT 1069

ON A SOLUTION OF THE NONLINEAR DIFFERENTIAL EQUATION FOR TRANSONIC FLOW
PAST A WAVE-SHAPED WALL'!

By Carn KarLan

SUMMARY

The Prandtl-Busemann small-perturbation method is utilized
to obtain the flow of a compressible fluid past an infinitely
long wave-shaped wall. When the essential assumption for
transonic flow (that all Mach numbers in the region of flow are
nearly unity) is introduced, the expression for the velocity poten-
tial takes the form of a power series in the transonic similarity
parameter.  On the basts of this form of the solution, an attempt
is made to solve the nonlinear differential equation for transonic
Sflow past the wavy wall. The analysis utilized exhibits clearly
the difficulties inherent in nonlinear-flow problems. The inves-
tigation has nevertheless been rigorously carried to the point
where the question of the existence or nonexistence of a mixed
potential flow free of discontinuities can be settled by the behavior
of a single power series in the transonic similarity parameter.
The caleulation of the coefficients of this dominant power series
has been reduced to a routine computing problem by means of
recursion formulas resulting from the solution of the differential
equation and the boundary condition at the wall. One of the
interesting results of the analysis 1s the rigorous statement that
the transonic similarity parameter must be less than four-thirds.

INTRODUCTION

The present report considers in detail a notion first ex-
pressed in reference 1, namely, that the Von Kdrmadn transonic
similarity rule is implicitly contained in the potential-flow
solution for high-subsonic flow past a prescribed body. The
calculations are very much simplified by the choice of rec-
tangular Cartesian coordinates as independent variables. For
this reason the solid boundary chosen is a two-dimensional
wavy wall of small amplitude extending to infinity in
both the downstream and upstream directions. The problem
is first treated by means of the Prandtl-Busemann iteration
method for high-subsonic undisturbed speeds. On the basis of
this solution an attemptismade to solve the nonlinear differen-
tial equation for transonic flow (corresponding to the linear
Tricomi equation in the hodograph plane) past a wavy wall.
The analysis utilized exhibits clearly the difficultiesinherent in
nonlincar-flow problems. The investigation has nevertheless
been rigorously carried to the point where the question of the
existence or nonexistence of a mixed potential flow free of
discontinuities can be settled by the behavior of a single power
series in the transonic similarity parameter. The calculation

of the coefficients of this dominant power series has been
reduced to a routine computing problem by means of recur-
sion formulas resulting from the solution of the differential
equation and the boundary condition at the wavy wall.

The author wishes to acknowledge the invaluable aid and
advice of Dr. A. Busemann of the Langley Laboratory during
the writing of this report, especially with regard to the final
section “General Analysis.”

CALCULATION OF HIGH-SUBSONIC FLOW PAST A WAVY
WALL BY MEANS OF PRANDTL-BUSEMANN
ITERATION METHOD

The fundamental nonlinear differential equation for the
potential flow of a compressible fluid can be written as

2 2
(Z—_z—' Mm2u2> ¢XX+(z_z'_ Mw27)2> dry—2M oxdrdxy=0

1)

where

c? v—1

Lty M —(w?+07)] 2
and
¢ velocity potential of flow
X, Y rectangular Cartesian coordinates in plane of flow
U, v fluid velocity components along X- and Y-axis,

respectively

U undisturbed stream velocity

¢ local speed of sound

Co speed of sound in undisturbed fluid

M, Mach number of undisturbed stream (Ule,)

¥ ratio of specific heats at constant pressure and con-
stant volume

The quantities ¢, X, Y, %, and » are nondimensional with a
characteristic length I as unit of length and the undisturbed
stream velocity U as unit of velocity. The subscripts X and
Y in equation (1) denote partial differentiation with respect
to the designated variables.

In order to obtain the Prandtl-Busemann iteration equa-
tions based on small perturbations of the undisturbed
stream, the assumption is made that the velocity potential
¢ can be expanded in the form

¢':X+¢1+¢2+¢3+ LRI (3)

1 Supersedes NACA TN 2383, ““‘On a Solution of the Nonlinear Differential Equation for Transonic Flow Past a Wave-Shaped Wall”’ by Carl Kaplan, 1951.

20377853



2 REPORT 1069—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

For the purpose of defining and controlling the iteration
procedure, the function ¢,.; and its derivatives are re-
garded as small compared with the preceding approxima-
tion ¢, and its derivatives. From equation (3) and the
fact that for irrotational or potential flow u=¢x and v=¢y,

u=1+¢ix+tdax+esxt+ . . .
and
v=¢y+drt+dsr+ . . .

When these expressions for u and » are introduced into
equation (1), together with the corresponding expression
for c¢?/c.,? given by equation (2), and the powers and prod-
ucts of ¢, and their derivatives are grouped according to the
assumptions of the small-perturbation method, the following
iteration equations for the first three approximations result:

brazt b1 =0 (4)
bozs+ bay=2 M *[(1 + 0) prsb1t b1y 1l (5)
Gt by =2M* {(1 + 0) (Prazbort Prrbae) -+
[28°(1 +0) — 11 ¢1b1ybizt+
(14 260+ 0)~3 Jorn’+5(08°— Dictn’+

¢lzy¢2y+ ¢11/¢21y} (6)
where z and y are new independent variables defined by the
transformation

r=X
} (M)
y=8Y
and
B2=1—M_2
1M,
2 B2

Equation (4) is a Laplace equation and equations (5) and
(6) are Poisson equations where the right-hand sides contain
only previously determined quantities. These equations
have been treated recently in reference 2 where the particu-
lar integrals of equations (5) and (6) are given in real form.
These particular integrals have been utilized in obtaining
the flow over the wavy wall. Thus, the equation of the
infinitely long wave-shaped wall (fig. 1) is assumed to be

Y=a cos aX (8)
where
a amplitude of wave
27
=3
A wave length

Y

Y
Fravre 1.—Wave-shaped wall.
The reference element of length is conveniently chosen to
1 . . .

be ” (=:2—)\1r> The equation of the wavy wall in nondimen-
sional form and in terms of the variables z and y then becomes

y=Le cos (9)
where, if the thickness coefficient of the wavy wall is defined

a

as t__—)\/g,,.’ then e=t.

The expression for the velocity potential ¢, obtained with
the aid of the particular integrals given in reference 2,
including terms of the order € and satisfying the boundary
conditions at infinity and at the solid wall to the same order
is as follows:

€ . 1 2
¢=x+Ee"’ sin :c—|—§ <%> {20 M 2y+[240c+
3
(2— )87} e~ sin 22— (%) (=84 M 224420 —

116°—0(22+130)B% )} e+ M _2[oc (6+50)+
(8+100+303)B% e ¥ +46(2+0) M Sye ) sin 2+

1 /e)?
i (5) (27 + M. 254110+ 40— 089 eov+

6M 20 (3+20+3B8)ye ¥+902 M, 'y% ¥} sin 3z+ . ..
(10)

It is of interest to examine equation (10) when the as-
sumptions of transonic-flow theory are introduced. These
assumptions are essentially that the undisturbed flow veloc-
ity differs only slightly from the speed of sound, that the
velocity component normal to the oncoming flow is small
compared with the speed of sound, and that the velocity
component in the direction of the oncoming flow is of the
order of the critical velocity ¢*. If the undisturbed stream
is in the direction of the positive z-axis, then the velocity
potential ¢, referred to the critical velocity ¢*, can be written
as (see reference 1)

¢=x+7—1{—1 (1—M.3 f(z,y) (11)
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The second term on the right-hand side of this equation
is the disturbance-velocity potential and implies that terms
involving powers of 1—AM_? higher than the first are to be
neglected. The differential equation satisfied by the func-
tion f(x,y) is obtained from equation (1) and takes the fol-

~lowing simplified nonlinear form:

9% _of 0%

o oz 0’ (12)

The boundary conditions to be fulfilled by f(z,5) are as

follows:
of
o ! l

?

2f (a
55_.0 J (13)
§—f~=—k sin z (aty=0, — o {z<w)
oy
where £, the transonic similarity parameter, is
. (y+1)e
]L’_(l_z\lmZ)S/z (14)

Thus, it is seen that f is a function of », ¥, and the transonic
similarity parameter £ only. In the limiting case, M,—1
and ¢—0, %k retains its meaning as a transonic similarity
parameter.

Note that in the Prandtl-Busemann iteration procedure
the order to which the boundary condition is applied at the
surface of the profile is the same as the order to which the
iteration has been taken. In the transonic case, however,
the surface boundary condition is always applied at the
axis y=0. In particular, this statement of the boundary
condition for transonic flow is a rigorous onc in the limit as
both the thickness coefficient and 1—A/,? simultancously
approach zero but with the same distribution of slope that
belongs to the family of profiles being treated. A rather
complete discussion of this point is contained in reference 3.

Before application of the foregoing considerations to equa-
tion (10), it should be noted that ¢ in that equation is re-
ferred to the undisturbed stream velocity U. In order to
introduce ¢* as the reference velocity, both ¢ and the right-
hand side of equation (10) must be multiplied by UJc*.

Now, from equation (2), with ¢=c¢* and 4?4 v*= Z.z; 1t
follows that
11 g s
Mr——2 (15)
1+
where
=Y

If terms of ounly the first power of 1—Af_ % are retained, it

follows from equation (15) that
M*=1 —5i1 (1—

M+ ... (16)

Then, multiplying the right-hand side of equation (10) by
this expression for M*, replacing ¢/8 by 'yj——l A—M_2k

from equation (14), and neglecting all terms containing
1—M_? to a power higher than the first yields the following
expression for ¢:

s=vt 7 =M 2){—x+(k+mk3> o7 sin o+

1—16~ (1+2y) k?¢~% sin 2x+[ (5+4y) sin x4

256

5;—5'{ (4412y+99? sin 3x] k3e—3'/}+ R (17)

Comparison of this equation with equation (11) shows that
the result obtained by means of the Prandtl-Busemann
iteration method contains implicitly the form of the solution
required by transonic-flow theory. Moreover, the expres-
sion for the function f(z,y), namely,

S, p)=— Jc—l—(k+256 )e‘” sin z+
— (1 +29)k% =% sin 23:—}—[—5%—6 (5+4y) sin z+

(4+12y+99? sin 31:] Ede=%4 | (18)

288

satisfies the nonlinear differential equation (12) and the
boundary conditions, equation (13), to the order . This
fact suggests a solution for the flow over the wavy wall, in
the neighborhood of Mach number unity, obtained directly
from equation (12).

SOLUTION OF EQUATION FOR TRANSONIC FLOW PAST
A WAVY WALL

Equation (18) suggests the following form for a solution
of the nonlinear differential equation (12) for transonic flow
subject to the boundary conditions stated in equation (13):

@, y)=—a+>] fu sin na (19)

where the f,,’s are functions of ¥ only. This form for f(z, ¥)
is substituted into equation (12) and repeated use made of
the following identity:

© n R

253 23 {Bum

m=0 n=m n=0 m=0

iMe
Ma
l||
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When the coefficients of the separate harmonic terms sin nz
are placed equal to zero, the following system of nonlinear
ordinary differential equations for f, results:

1 n
it —nfumm—g 1 35 ) fnfamm—
i (m—l—l)(m—l—n—l—l)fmmfm“u

) (20)

Note that equation (20), with the right-hand side placed
equal to zero, has a solution of the form ¢~". An iteration
procedure is then set up in such a manner that the highest
power of k and of e~¥ appearing in the functions f, is equal to
the number designating the iteration step. Thus, the fol-
lowing sets of iteration equations result:

l\:blr—l

(n=1,2,...

Step 1,
fl”—f1=0 2n
Step 2,
J—Afem =i 57 (22)
Step 3,
H'—fi=—ffe }
(23)
1" —9f;=—3ff.
Step 4,
f‘z”'_4f2=—%f12—3f1f3
(249)
fi'—16 fy=—6f1f;—4f."
Step 5,
fl"—f1=_f1f2—3f2f3
fi''—9fs=—8ff—6/11s (25)
fs’,—25f5=—10f1f4—‘15f2f3
Step 6,
fﬂ”“4f2:_%f12—3f1f3—8f2f4
f'—=16fi=—6ffs—4f*—10/1; (26)

fo'—36fe=—1 5f1f5_22‘7' fif—24/1.1,

and so forth.

The right-hand sides of these equations are known functions
constructed from previously determined quantities in accord
with the iteration procedure adopted.

These equations are of the second order, nonhomogeneous
type with constant coefficients and are readily integrated.
The resulting expressions for fi, fs, fs, fa, f5, and fe, with the
boundary conditions (13) taken into account, are as follows:

1861

2
J <1+256 3% 256°

2 3,—-3y__.
(64 64><256k>y:|k ’

Be~wt .. . @7)

_ 5 ‘?765 ,

)k "~| 256 o256t £ T
65

_576><256+72><256y+

32)(256 y Jr8><256 y)

419

234215
Je= ﬁ+72><256

2 4 2

k*+ 1352562 +(8+1024 k*+
4085 pwy [ 125 45895

512567 ) :l’” "—| 36256 T 108256 F T
5 815 2) < 2) 2] 4,—4y__
556 Tagsxsiz © ) VT 128+8192k Y | ke

( 12245 6245 79
144%256° 72X2562 7 7 3%2562 ¢

47
. 192X256

¥+

4 6, —6;
12><256y>ke L 28)

23603 ,,, /1 , 259
72 27><‘7562k+<24+72><256 >y+

1 - _< 1765 155
(32 8192 > ]k "—\3%256: T 3a%256 ¥ T

321><1;56 + 256 y > ko™ oo
Ji= 15736+7233g<5245762k +<384 323(9245(6 k2> vt
128+2886>1<72% k2> 2+(96 24><256 ) ]k4 e
(93?(225516°+57?3§32556 J+§§4>—<5—2556 v
481><1256 y3+48><256 v ) kre™v (30)
Jo= g%Jr% y+%§6 Yy Jr384 ¥+
24—>2<575_6 y4> kbe=%4 . .. (€3]

[ 91 91 23
fﬁ_<54><2048+72><256 Y3048 Y +1024 v+

soag V't grag V°) et 32)

Note that the functions f;, f,, and f; include the terms of
equation (18), obtained from equation (10) by allowing the
Mach number to approach unity.

Equations (27) to (32) may be considered to be essentially
the nonlinear solution for the flow past a wavy wall of small
amplitude for stream Mach numbers in the neighborhood of
unity in the form of a power series in the transonic similarity
parameter k. Moreover, this solution is identical with the
one obtained by means of the Prandtl-Busemann iteration
equations when Mach number unity is approached.

CALCULATION OF LOCAL MACH NUMBER, CRITICAL
SIMILARITY PARAMETER, AND
PRESSURE COEFFICIENT

GENERAL FORMULAS

From equation (11), when all terms containing 1—A{.?
to a power higher than the first are neglected, the expression
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for the fluid velocity referred to the critical speed of sound
c*is

e=1+2 a-MY 33)

Now, from equatlon (2), the relation between ¢ and the

“local Mach nutnber M is

y+1
g M

L (34)

In the transonic approximation, the difference of any Mach
number in the field of flow from unity is considered a small
quantity. If terms of only the first power of 1—M? are
retained, equation (34) yields

=1 + 7 (MP—1)+. . (35)
Hence, from equation (33),
M= (MY (36)

This equation provides a means of calculating the critical
value of the transonic similarity parameter; that is, the
value of the parameter & for which AM=1 at the point of
maximum velocity on the boundary.

CALCULATION OF THE CRITICAL VALUE OF k

For the family of wavy walls of small amplitude (including
the limiting case of vanishingly small amplitude) with M =1
at =0 and y=0, equation (36) yields the following relation
for the determination of the critical value of k:

()

By means of equation (19) together with the expression
for f, to f; given by equations (27) to (32), equation (37)
yields the following power series, exact to seven terms, for
the determination of the critical value of % for the family
of wavy profiles:

(37

337 4043

2 4
k+ k +384 “too16" tosexsTer +
359381 .
570%256°F T+ =1 (38)

The procedure adopted in order to estimate the critical
value of k is as follows: From equation (38) the value of
k can be found for 2, 3, 4, 5, 6, and 7 terms. These values
of k& are, respectively, 1, 0.8990, 0.8644, 0.8504, 0.8424, and
0.8377. The last two values indicate the approach to the
asymptotic value of k, that is, the value of £ when the number
of terms in equation (38) is infinite. If the values of %
approach smoothly to the asymptote, the estimated critical
value k=0.8377 is very nearly correct.

Suppose now that both sides of equation (36) are divided
by [(v4+1)€]¥3. Then, since

= (’Y+ 1)e
=a-a 5"

equation (36) can be written as

1—AM2
[FDgs™

The right-hand 51de of equation (39) is a function of z, ¥,
and the parameter & only and is characteristic of the entire
family of boundary profiles. For the family of wavy walls
with the critical value assigned to k, equation (39) evaluated
at the wall becomes

1—M?
[(y+1)e*?

— 28 L af

dz (39)

=1.1253(1—0.8536 cos —0.0989 cos 2z —
0.0299 cos 3x—0.0122 cos 42 —0.0038 cos 5x—
0.0017 cos 6x) (40)
MZ

tween —r and = and ﬁgure 2 shows the corresponding
curve.

Table I lists the values of for values of z be-

CALCULATION OF THE PRESSURE COEFFICIENT

Bernoulli's theorem for a compressible fluid assumes the
following differential form along a streamline:

2
A —p)+5 pU%d (F7—1)—=0 (41)
where
» pressure in fluid
p density of fluid
q speed of fluid
and the subscript « denotes the quantity in the undisturbed
fluid. Now, from equation (2) the relation between the
nondimensional speed ¢/U and the local Mach number M is
given by
1 +?:—1- M.
M 2

q2

UZ

(42)
1 +7

In accordance with the assumption of transonic-flow theory
that all Mach numbers in the flow differ only slightly from
unity, equation (42) becomes

2
¢

7= (43)

2 2
2 M= —MI)+
where powers of 1—AM_% and 1—M? higher than the first
have been neglected. Then with the pressure coefficient
defined as
Cp M=

P
él-anz




(2]
td
t=
d
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o]
]
f—
o
=)
T
2
>
!
=
2

28 -3.2
(r+y /3
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Fiaure 2.—Distribution of[( TT)epn and 73

equation (41) takes the following form for transonic flow:

aC, M, =—_*T1 d[1—M*—(1—M,?)] (44)
After integration,
C, Mw=—2~ [.1 ~M?*—(1—M_ %]
’ v+1
or, with the aid of equation (36),
Cprtam— 2 1= M 2)<1+a > (45)

The right-hand side of this equation can be considered to be
the first term in a power-series development of C, ., in

1—M_2 In particular, when the local Mach number first
attains unity, then —g—‘£=0 at x=0, y=0 and equation (45)
becomes
2
C,,,M”=——m 1—M.» (46)

a result valid in the transonic range only. Again, if the
thickness coefficient approaches zero as M_,—1 and M=1
at z=0, y=0, then equation (46) shows that the slope

Cy, »,, at the surface for the family of wave-shaped walls.

dCp My

(l(l—— )

at the critical value M_ =M, ,—1 is a constant

+17 independent of the particular family of profiles

treated. This result is valid whether the approach to Mach
number unity is made from the subsonic or supersonic region.

1/3
If both sides of equation (45) are multiplied by (’Y+2’13) ;
then
1)1/ o}
g"%ﬁz‘_— Cﬁ""m:_2k_2/3 (1+b—-£> (47>

where the right-hand side depends only on z, y, and the
parameter & and is characteristic of the family of boundary
profiles treated. For the family of wavy walls with the
critical value of k chosen, equation (47) takes the following
form at the solid surface (y=0):
1/3
(—’Y——%—)— C, M, =—2.2507(0.8536 cos £40.0989 cos 2z
€ 0.0299 cos 32-+0.0122 cos 4z+

0.0038 cos 52+0.0017 cos 6z) (48)
1/3
Table I lists the values of (7—%—2/13) C, a,, for values of z

between —7 and = and figure 2 shows the corresponding curve.
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) — M2 3
TABLE I—VALUES OF g 71+11;4€ s AND (71’2,13) Coa,, AT

THE SURFACE FOR THE FAMILY OF WAVE-SHAPED WALLS

z 12 (rDve
(deg) CEBYIEE eSS
—180 1. 996929 1. 743190
—175 1. 994505 1. 738342
—170 1.987188 1,723708
-1 1. 957430 1. 664191
—150 1. 906695 1. 562722
—140 1. 834890 1. 419111
=130 1. 743433 1. 236197
—120 1. 634666 1. 018664
-110 1. 510815 770962
—100 1. 373602 496536

—95 1, 300524 350379
—080 1. 224843 199018
—85 1. 146916 043163
—80 1. 067146 —. 116375
—~70 . 903656 —. 443357
—60 . 737110 —, 776449
—50 . 569667 —1.111335
—40 . 404761 —1. 441145
—30 250223 —1. 750223
—20 . 119935 —2. 010799
—10 . 031487 —2.187694
-5 007977 —2. 234715
[} 000007 —2. 250654

5 . 007977 —2. 234715

10 . 031487 —2. 187694

20 . 119935 —2. 010799

30 . 250223 —1. 750223

40 404761 —1.441145

50 569667 —1,111335

60 737110 —. 776449

70 . 903656 —. 443357

80 1. 067146 —. 116375

85 1. 146916 . 043163

90 1. 224843 . 199018 !

95 1. 300524 . 350379 !

100 1. 373602 . 496536

110 1. 510815 . 770962

120 1. 634666 1. 018664 !

130 1. 743433 1. 236197 :

140 1. 834890 1. 419111

. 150 1. 906695 1. 526722
! 160 1. 957430 1. 664191
170 1.987188 1. 723708
It 180 1. 996929 1. 743190 i

GENERAL ANALYSIS

An examination of the expressions for f; to f; given by
equations (27) to (32) shows that the general form of f, is

n 1
:i e—(2p+n)y Z quAnpkn+2r
p=0 =p
(n=1,2, . . . ) (49)

where, if p=0, the upper limit of ¢ is n—1, and, if p0, the
upper limit of ¢ is 2p+n—2. The four-labeled coefficients
Az? are real numbers calculated from recursion formulas
obtained from the system of differential equations (20) and
the boundary condition at the surface of the wavy wall.
The boundary condition at y= « is automatically satisfied
by the form of f,; whereas the boundary condition at the wall
takes the form .

Un’)y=0:—’5 81;:%%} (50)

Inserting the expression for f, given by equation (49) into
equation (50) yields immediately the following results:
Agd=
and
25 @pm)dsr= 35 Ar?
=

p=0,1

(n:1;2} . ®) (51)

where, if n=1, the lower limit of » on the right-hand side is
unity and, if n#1, the lower limit of p is zero. Also, if

n=1, the upper limit » of p goes from 1 to « and, if n%¢1, r
goes from 0 to «.

In order to find the recursion formulas for the coefficients
Ar?, the expression for f, given by equation (49) is sub-
stituted into the system of differential equations (20). The
calculation is facilitated by the introduetion of the following
notations:.

ine2 ©
= 2 Y2 Ak (52)
=0 r=p
and
=z”;, Ar 4, (53)
=

where the quantities A™" arise from the multiplication of
the two infinite series > Ame=2% and > Az e~???. Note
p=0 p=0

that the quantities A™" are symmetric with respect to the
upper labels m and n. Then

fnzk”e‘"”iA;e‘z’”’ (54)
=0

When this expression for f, is substituted into equation (20)
and repeated use is made of the identity

HI

the exponential terms in ¥ can be eliminated, and the follow-
ing recursion formulas result:

n—1
2R (A5 == Fn 32 ) Ay

(p=0;n=2,3, ... ) (565)

and

4p(p+n)A; —22p+n)(4;) +(A43)"' =

n—1 D
— i S me—mydrn Ly S mykm A
4 m=1 2 m=1

p—m

(p=1,2, w;n=1,2,... =) (56)

Note that these recursion formulas still contain powers of ¥
and k. Both y and £ can be eliminated for given values of p
and recursion formulas containing only the coefficients
Az ? thus obtained. For example, consider equation (55) for
which p=0. By repeated use of the identity

ZZ‘,Baﬁ—ZZ‘,Baﬁ

a=0 8=0 =0 a=8

the following recursion formula is obtained:

—2n(¢+1) A% g+ 1)(g+2)6 2 A%, 0=

g n—=2—t T
— i 23 e D m—1) 3 Apiednp e,
i=0 m=¢g—¢ 8§=0
(n=2; 3, @3 Q=0; 1)27 . (n_2)1
r=0,1,2, ... «) 57)
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where

57» -2_0 (q=n_2)
« 1 (g#n—2)

A number of interesting relations can be easily obtained
from this recursion formula. Thus, for g=n—2 and r=0,

2(n—1)A,", f=1 ”‘2 (—m—1)(m-+1)A171m 8 Am3S

)
Then
1 25 9
20__— 50__
A g A28 48128
1 9
30___—_ 80__
A30=355 Ag S 5190 T (58)
1
At d=— e e
30 96 J

From these numerical values the general form is found to be

nn—z
n]4n—1

n 0___
n—10"

Similarly, for g=n—2 and r=1,

nn 2 o
(n—1)14"~ i Ao

n —
n—1 17"

In a corresponding manner, more complicated expressions
can be obtained for A4, ,? when r=2, 3,

Note that in the expression for the dlsturbance-pobential
function f(z,y), infinite series of the type

o
Sty e~k 2 sin ne A,%, %

The ratio of the (n41)st and nth terms is
,sin (n+Dx 4~ 9

sinnez A,".¢

occur.

kye~
In order for the series to converge, the limit of this ratio as
n—> o must be less than unity. Thus, if the maximum
value of ye*”(=%> is inserted and ¥=0, Cauchy’s ratio

test yields
ket ortea (59)
e 4
Other infinite series occur in the expression for f(x,y) which
diverge for values of the transonic similarity parmeter k

considerably less than 4. Thus, consider the recursion
equation (57) and take ¢=0 and r=0. Then

—2nAr3+-2852 A58

Mklr—l ”

2 (m+Dn—m—1) A A~ '%

and

6.A%§=2A35+34338
Al §= A3 5+3.455+2(450*
10A435=2A35+10A453+1543¢

12A428=2A33+15A453+24 A8 5 A5 ¢ 2 ( A} 9)?
Also from equation (57),
4A53= 413
8A38=38A430-+4 A8 A38+34%0
2043 3=6A453+15A410 A5 3+15410 A35+10410
8AS3=2A30+8A70 As0-+9A470 A58-+8A418 AF5+541%

and
30A453=12A433+15A433 A23+10A433+15A4329 A3 8
12 450=4 A4} 3+9A§8 A35+8A58 A35+5A458
8438 Ail (A”2
48 A23=20A303+24 450 A33+15A438+27A435 A3
20 A10

The following relations are obtained from the supplementary
equations (51):

2438438
3A3I= ALY 6.438= A28
4A0— A% ...

From these relations, together with the ones listed in equa-
tion (58),

1 7
Arg=g Afg=res
1 7X13
30~ 60__
A 724 Af3 72X 256
7
40___ " ...
A 7384
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and lead to the general rule

{3n—5}

[\ J—
Az 3= nl4r-1

n=2,3, ... ) (60)

= A7 3; therefore,

From equation (51), n.

{3n—5}

n0_—
Ag 3= nnl4rt

n=2,3, ... ) (61)

where, by definition,

{8n—5}=1X4X7X10X13X ... X(@Bn—>5)

In the expression for the local Mach number in the field of
flow given by equation (36), the expression O f/0x occurs.
This expression, with =0, contains infinite series of the
type

=§‘1 nkme=" Az 8 (62)
and
= gz nkme—"v Ay 8 (63)

If the maximum value of ¢~ (=1) and the expressions given
by equations (60) and (61) are inserted, the Cauchy ratio

test shows that both series converge for k<§- In particular,

the series expression for F evaluated at the surface (y=0)
can be expressed in closed form. Thus,

p=i+3 2000 s

22 (1—— k) (64)

The graph of F against k is a semicubical parabola with the

cusp point at k=% and F'=2. With the restriction that the

transonic similarity parameter k be positive and that one
and only one value of £ correspond to a given value of F,
the permissible values of & and F are confined to the part
of the parabola lying between the origin (0,0) and the apex

(4/3,2). The power-series expression for G evaluated at
the surface can also be expressed in closed form; namely,

= {3n—5} .

g (n—1)147-1 k"= (65)

e

This expression, together with the one for F, shows clearly
that the parameter k cannot be equal to but must be less than
four-thirds.

A close examination of the recursion formulas (55) and
(56) discloses the important fact that each one of the mani-
fold of power series in k£ that appear in the functions f, can

be expressed in terms of the members of a single dominant
set of power series. This dominant set consists of one power
series in k from each f,, namely, the one multiplied by ¢~™
only. According to equation (49), the members of the

dominant set of power series are given by
Sa=2 Ap? krter (n=1,2,... @)  (66)

r=0

Several examples are now given to illustrate this impor-
tant observation. Consider the series that belong to the set

z”;o Apo e n=2,3,... =)
=

From the recursion formulas,

8

>3 Are k=g Sy

r=

|
<

8

> Ap8 k= S04 818,

r=

|
)

Aso =t S#—l— g S1"S

3 1
513 o7 S1Ss+5 S

M

.,
1l
=)

Consider now the set

So Ag okt (n=3,4,... »)
r=0
Then
> ALk T=gs S,
T=
jo Az° k2r+4____.1; Sl4+l 9,28,
T=
Consider the set
SN And fre n=1,2,... )

From the recursion formula (56),

© 3
S5 A k= — e S

17
21 Lhor+2_ ____ _ °
; i L 12X256

8182

8

8, l 8’1282—-—;11- 8,8,

8

> g ke e B S L 898, 2 52—
=1

1024 256

-

Sngz—-g S8,

.....
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Consider the set

5511¥3k”+” n=1,2,... »)
r=1

Then
d 1

11 por+1— _  _— 3
;Alrk 481
; A?: k2'+2=—‘—256 Sl SlZSE
il 15 57 3

31 Jhor+3__ _ 5__ 3 20 Q 9 2
Tgl lrk _ 2048S1 5 S S2 S1S3 16SIS2
Other examples are
i 1

12 Lordl o _ 5
EA“’C 2048 Sy
i 3

12 Jor+1_ 3
EAZ'IC =—g192 5% 256S °Se
i Al 2 k2r+1=i S 5___7__ 813S2_i_ S S 2___1___ S ?,S_7
~ 8192 "' 1536 16 7' 4T
hid 61 . 1

12 Lor+1__ 5 2
;A o7 k 956><576S‘+384S SSZJr
256 S3S,— SQS3

The recognition of the existence of a dominant set of power
series in k represents 2 major reduction in the complexity of
the present problem. Thus, consider the array of infinite
power series contained in equation (66):

Si=Abg k+ A I ALS B AL L)
S,= A3 R+ A3 R+ AT P+ AL ES
Se=A3S P+ AR+ ASS R+ AT
Se=AS b+ AR HATL R AL IO
Sy=AZ kS +AF T+ ASS RO+ A R .

F (67)

..... J

An examination of equations (27) to (32) shows that the
coefficients Az ? of the series S, appear to be positive and
monotonically decreasmg. The series formed from the first
column on the right-hand side of equation (67) therefore
dominates the series formed from succeeding columns.

©
Moreover, the first-column series Az S k™ has a radius of
’ n=1

convergence Ic=% (see equation (61)). The radii of con-

vergence of the other columnar series therefore are either
equal to or greater than four-thirds. Similarly, an examina-
tion of the series S, shows that the coefficients in each column
on the right-hand side of equation (67) also seem to form
positive and monotonically decreasing sequences. This be-
havior means that S; is the dominant series of the set S, and,

in fact, of the aggregate of power series in k in the expression
for the disturbance potential f(z,y).

Consider now the series consisting of the first terms of the
odd-labeled series S;, S5, S;, . . ., thatis,

ioAZHD-*l g k2n+1 (68)
n=

According to the theory of power series (and it can be easily
verified), the radius of convergence of this power series is

. 4
still ’f—g'

the dominant series S; shows that

Now, a comparison of corresponding terms with

11 1
10 30__
Aii=gg5 > Aso=73
and
1861 7
10__ 50__
Adi=53056: ~ A 8=T5%256

Thus, if in general A} 2 >A***§ then the radius of conver-
gence of the dominant series S; can be less than the radius
of convergence of the comparison series given by expression
(68) and therefore may conceivably be equal to the critical
value k,,=0.8377. Moreover, it would then follow that the
original Prandtl-Busemann small-perturbation method is
valid for purely subsonic flows only. This conclusion would
not invalidate other approaches to the transonic-flow problem
(reference 4).

Unfortunately, the coefficients A} 2 do not conform to any
apparent or superficial law, but perhaps a careful study of
the recursion formulas (55) and (56) and the supplementary
or boundary relations (51) will yield a rigorous proof of the
foregoing statements. Otherwise, it remains to calculate a
reasonable number of the coeflicients A3 J. TFor this pur-
pose the development of complete recursion formulas similar
to equation (57) for the required values of p is worth while.
Thus, for p=1, the recursion formula is

4n+0)A; L —2+2) (¢+1)8; A3 4

+(g+D(g+2)8 frdte 1=
1

g
o
- q GZ

i >3 ;1_ [(m+1)(n—m—1)

T
AT Lt mi—m) 35 A ,,,MA":M,E,,]—

§= =

%n(n+1) iAl OAn-:l ros
§=0

n=1,2,...o;q¢=0,1,2,. .. n; r=0,1,2,. . . @) (69)
where
6n—1.n____0 (an_l or n)
¢ 1 (g%n—1 ormn)

Finally, it may be of interest to give the general formula
for the Mach number distribution at the surface of the wavy
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wall. Thus, by means of equations (36) and (49),

Me—1 - [3] m
Tar=—1+33k" 2> (n—2m) cos (n—2m)x > A" > 2,
1—-M, =1 m=0 =0

(70)
where [g] denotes the integral part of n/2.

LanGLEY AERONAUTICAL LABORATORY,
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