
NATIONAL ADVISORY’-CO;MMITTEE -- 
FOR AERONAUTICS 

REPORT 1069 

.QF A SOLiJTION OF THE NONLINEAR DIFFERENTIAL 

. EQUATION FOR TRANSONIC FLOW’ PAST 

A WAVE-SHAPED WALL 
., 

By CARL KAPLAN 

1952 

For pie bY the Swwint=wknt of Documents. U. 9. Government Printing Oliice. Wmhinpton 25. D. C. (issued imgnlarly.) Price 20 centl 
(dde COPY). SdmxlPtion Prke $9.76 8 fear; $1.25 additional for foreign mailing. Single copies vary in price. 

https://ntrs.nasa.gov/search.jsp?R=19930092114 2020-06-17T03:34:07+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42794285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TECH LIBRARY KAFB, NM 

ImlllIIIl~lIHIllllR IIlllllIII1111 
0143LBb ’ 

ON A SOLUTION OF THE NONLINEAR DIFFERENTIAL 

EQUATION FOR TRANSONIC FLOW PAST 

A WAVE-SHAPED WALL 

By CARL KAPLAN 

Langley Aeronautical Laboratory 
Langley Field, Va. 



National Advisory Committee for Aeronautics 
Headquarters, 1724 F Street NW., Washington 25, D. C. 

Created by act of Congress approved March 3, 1915, for th’e supervision and direction of the scientific study 
of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act 
approved March 2,1929, and to 17 by act approved May 25,1948. The members are appointed by the President, 
and serve as such without compensation. 

JEROME C. HUNSAKER, SC. D., Massachusetts Institute of Technology, Chairman 

ALEXANDER WETMORE, SC. D., Secretary, Smithsonian Institution, Vice Chairman 

DETLEV W. BRONK. PH. D., President, Johns Hopkins Univer- 
sity. 

JOHN H. CASSADY, Vice Admiral, United States Navy, Deputy 
Chief of Naval Operations. 

EDWARD U. CONDON, PH. D., Director, National Bureau of 
Standards. 

HON. THOMAS W. S. DAVIS, Assistant Secretary of Commerce. 
JAMES H. DOOLITTLE, SC. D., Vice President, Shell Oil Co. 
R. M. HAZEN, B. S., Director of Engineering, Allison Division, 

General Motors Corp. 
WILLIAM LITTLEWOOD, M. E., Vice President, Engineering, 

American Airlines, Inc. 
THEODORE C. LONNQUEST, Rear Admiral, United States Navy, 

Deputy and Assistant Chief of the Bureau of Aeronautics. 

HON. DONALD W. NYROP, Chairman, Civil Aeronautics Board.. 
DONALD L. PUTT, Major General, United States Air Force 

Acting Deputy Chief of Staff (Development). 
ARTHUR E. RAYMOND, SC. D., Vice President, Engineering, 

Douglas Aircraft Co., Inc. 
FRANCIS W. REICHELDERFER, SC. D., Chief, United States 

Weather Bureau. 
GORDON P. SAVILLE, Major General, United States Air Force, 

Deputy Chief of Staff (Development). 
HON. WALTER G. WHITMAN, Chairman, Research and Develop- 

ment Board, Department of Defense. 
THEODORE P. WRIGHT, SC. D., Vice President for Research, 

Cornell University. 

HUGH L. DRYDEN, PH. D., Director JOHN F. VICTORY, LL. D., Executive Secretary 

JOHN W. CROWLEY, JR., B. S., Associate Director for Research E. H. CHAMBERLIN, Executive Oficer 

HENRY J. E. REID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va. 

SMITH J. DEFRANCE, B. S., Director Ames Aeronautical Laboratory, Moffett Field, Calif. 

EDWARD R. SHARP, SC. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio 

TECHNICAL COMMITTEES 

AERODYNAMICS OPERATING PROBLEMS 
POWER PLANTS FOR AIRCRAFT INDUSTRY CONSULTING 
AIRCRAFT CONSTRUCTION 

Coordination of Research Needs of Military and Civil Aviation 
Preparation of Research Programs 

Allocation of Problems 
Prevention of Duplication 

Consideration of Inventions 

LANGLEY AERONAUTICAL LABORATORY, AMES AERONAUTICAL LABORATORY, LEWIS FLIGHT PROPULSION LABORATORY, 
Langley Field, Va. Moffett Field, Calif. Cleveland Airport, Cleveland, Ohio 

Conduct, under unijed control, for all agencies, of scientific research on the fundamental problems of flight 

OFFICE OF AERONAUTICAL INTELLIGENCE, 
Washington, D. C. 

Collection, classijkation, compilation, and dissemination of scientific and technical illformation on aeronautics 
II 



REPORT 1069 

ON A SOLUTION OF THE NONLINEAR DIFFERENTIAL EQUATION FOR TRANSONIC FLOW 
PAST A WAVE-SHAPED WALL 1 

By CARL KAPLAN 

SUMMARY 

The Prandtl-Busemann small-perturbation method is utilized 
to obtain the JEow of a compressible &id past an in$nitely 
long wave-shaped wall. When the essential assumption for 
transonic$ow (that all Mach numbers in the region ofsow are 
nearly unity) is introduced, the expression for the velocity poten- 
tial takes the form of a power series in the transonic similarity 
parameter. On the basis of this form of the solution, an attempt 
is made to solve the nonlinear di’erential equation for transonic 

$ow past the wavy wall. The analysis utilized exhibits clearly 
the di$culties inherent in nonlinear-jtow problems. The inues- 
tigation has nevertheless been rigorously carried to the point 
where the question of the existence or nonexistence of a mixed 
potential$ow free of discontinuities can be settled by the behavior 
of a single power series in the transonic similarity parameter. 
The calculation of the coeficients of this dominant power series 
has been reduced to a routine computing problem by means of 
recursion formulas resulting from the solution of the dierential 
equation and the boundary condition at the wall. One of the 
interesting results of the analysis is the rigorous statement that 
the transonic similarity parameter must be less than four-thirds. 

of the coefficients of this dominant power series has been 
reduced to a routine computing problem by means of recur- 
sion formulas resulting from the solution of the differential 
equation and the boundary condition at the wavy wall, 

The author wishes to acknowledge the invaluable aid and 
advice of Dr. A. Busemann of the Langley Laboratory during 
the writing of this report, especially with regard to the final 
section ‘I General Analysis.” 

CALCULATION OF HIGH-SUBSONIC FLOW PAST A WAVY 
WALL BY MEANS OF PRANDTL-BUSEMANN 

ITERATION METHOD 

The fundamental nonlinear differential equation for the 
potential flow of a compressible fluid can be written as 

where 

and 

g2=1$Z$ M,2[1-(u2+vz)] (2) m 

INTRODUCTION 

$, Y 
velocity potential of flow 
rectangular Cartesian coordinates in plane of flow 

u, v fluid velocity components along X- and Y-axis, 
respectively 

u undisturbed stream velocity 
c local speed of sound 

2, 
speed of sound in undisturbed fluid 
Mach number of undisturbed stream (U/c,) 

Y ratio of specific heats at constant pressure and con- 
stant volume 

The present report considers in detail a notion first ex- 
pressed in reference 1, namely, that the Von Karman transonic 
similarity rule is implicitly contained in the potential-flow 
solution for high-subsonic flow past a prescribed body. The 
calculations are very much simplified by the choice of rec- 
tangular Cartesian coordinates as independent variables. For 
this reason the solid boundary chosen is a two-dimensional 
wavy wall of small amplitude extending to infinity in 
both the downstream and upstream directions. The problem 
is first treated by means of the Prandtl-Busemann iteration 
method for high-subsonic undisturbed speeds. On the basis of 
this solution an attempt is made to solve the nonlinear difl’eren- 
tial equation for transonic flow (corresponding to the linear 
Tricomi equation in the hodograph plane) past a wavy wall. 
The analysis utilized exhibits clearly the difhculties inherent in 
nonlinear-flow problems. The investigation has nevertheless 
been rigorously carried to the point where the question of the 
existence or nonexistence of a mixed potential flow free of 
discontinuities can be settled by the behavior of a single power 
series in the transonic similarity parameter. The calculation 

1 Supersedes NACA TN 2333, “On a Solution of the Nonlinenr Differential Equation for Transonic Plow Past B Wave-Shaped Wall” by CarI Kaplm~, 1951. 
x3773-53 

The quantities 4, X, Y, u, and v are nondimensional with a 
characteristic length I as unit of length and the undisturbed 
stream velocity 77 as unit of velocity. The subscripts X and 
Y in equation (1) denote partial differentiation with respect 
to the designated variables. 

1 

In order to obtain the Prandtl-Busemann iteration equa- 
tions based on small perturbations of the undisturbed 
stream, the assumption is made that the velocity potential 
+ can be expanded in the form 

4=X+951+42+~3+ . . . (3) 
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For the purpose of defining and controlling the iteration 
procedure, the function C$ n+l and its derivatives are re- 
garded as small compared with the preceding approxima- 
tion C& and its derivatives. From equation (3) and the 
fact that for irrotational or potential flow u=& and v=&, 

u=1+cblx+hr+~3x+ . . . 

When these expressions for u and v are introduced into 
equation (I), together with the corresponding expression 
for c~/c,~ given by equation (2), and the powers and prod- 
ucts of & and their derivatives are grouped according to the 
assumptions of the small-perturbation method, the following 
iteration equations for the first three approximations result: 

~Izz+d%Y=o (4) 

~222+ha/=2~,*r(~ +~hz~lzz+4lY~lnJl (5) 

~322+4~3u~=2M,~ 1 
(1 -I- u) (dw#%+ #dJ2rz) + 

Pm +a)- 11&#%/4k/+ 

(1+0)[2/3Yl+o)-;] #w#az2+f(u~2- 1)4J1*2~13/2f 

~1ZU~2,f cbwc2zu 
f 

(6) 

where CC and y are new independent variables defined by the 
transformation 

x=x 

I 
(‘7) 

y=py 
and 

p2= l- Mm2 

r+1 M 2 UC----m- 
2 62 

Equation (4) is a Laplace equation and equations (5) and 
(6) are Poisson equations where the right-hand sides contain 
only previously dekrmined quantities. These equat,ions 
have been tseated recently in reference 2 where the particu- 
lar integrals of equations (5) and (6) are given in real form. 
These particular integrals have been utilized in obtaining 
the flow over the wavy wall. Thus, the equation of the 
infinitely long wave-shaped wall (fig. 1) is assumed to be 

Y=a cos aX (8) 
where 
a amplitude of wave 

27r a=- 
x 

x wave length 

Y 

FIGVRE l.--Wave-shaped wall. 

The reference element of length is conveniently chosen t,o 

bei =-&. 
( > 

The equation of the wavy wall in nondimen- 

sional form and in terms of the variables x and y then becomes 

y=pe cos 2 (9) 

where, if the thickness coefficient of the wavy wall is defined 
a ~7 then E=t. as t=A/27r 

The expression for the velocity potential 4, obtained with 
the aid of the particular integrals given in reference 2, 
including terms of the order 8 and satisfying the boundary 
conditions at infinity and at the solid wall to the same order 
is as follows : 

+=x+$e+ sin x+? 8 $ 2( 2~M,~y+[2+u+ 
0 

(2--a)/37} eeYUsin 2x-+4 $ 
0 

3({ -S+Mm2[24+2u- 

11~~-~(22+13~)p~]}e-~+M,~[u(6+5u)+ 

(s+~ou+~u~)P~] ee3g+4u (2+u)Ma4yee33 sin xf 

- 7’;, (;y{ [27+M,2(-25+11u+4u2-99p2)]e-3”+ 

6M,2~(3+2a+3p2)ye-3y+9u2Mm4y2e-3u} sin 3x+ . . . 

(10) 

It is of interest to examine equation (10) when the as- 
sumptions of transonic-flow theory arc introduced. These 
assumptions are essentially that the undisturbed flow veloc- 
ity differs only slightly from the speed of sound, that the 
velocity component normal to the oncoming flow is small 
compared with the speed of sound, and that the velocity 
component in t.he direction of the oncoming flow is of the 
order of the critical velocity c*. If the undisturbed stream 
is in the direction of the positive x-axis, then the velocity 
potent.ial +, referred t,o the critical velocity c*, can be written 
as (see reference 1) 

(11) 
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The second term on the right-hand side of this equation 
is the disturbance-velocity potential and implies that terms 
involving powers of l -Mm2 higher than the first are to be 
neglected. The differential equation satisfied by the func- 
tion f(x,y) is obtained from equation (1) and takes the fol- 
lowing simpli@d, nonlinear form: 

azf afa2f -=-- 
by2 ax a22 (1% 

The boundary conditions to be fulfilled by f(x,y) are as 
follows: 

af 1 -=- 
ax 

af-0 \ 

I 

(at y= -) 

by- (13) 

af -=- 
aY 

ksin x (aty=O, -m<x<m) 
I 

where k, the transonic similarity parameter, is 

I<= (Y+lb ____~. (I- ~4,2)3/2 (14) 

Thus, it is seen that f is a function of X, y, and t,he transonic 
similarity parameter k only. In the limiting case, M--+1 
and E-JO, k retains its meaning as a transonic similarity 
parameter. 

Note that in the Prandtl-Busemann ikration procedure 
the order to which the boundary condition is applied at the 
surface of the profile is the same as the order to which the 
iteration has been t~akcn. In the trnnsonic cast, l~owcvcr, 
t.1~ surface boundary condition is always applied at, the 
axis y=O. In particular, this statement of the boundary 
condition for transonic flow is a rigorous one in the limit as 
both the t,bickness coefficient and 1 -M,2 simultaneously 
approach zero but with the same distribut,ion of slope that 
belongs to the family of profiles being treated. A rather 
complete discussion of this point is contained in reference 3. 

Before application of the foregoing considerations to equa- 
tion (lo), it should be noted that + in that equation is re- 
ferred to the undisturbed stream velocity U. In order to 
introduce c* as the reference velocity, both 4 and the right- 
hand side of equation (10) must be multiplied by U/c*. 

Now, from equation (2), with c=c* and uz+v2=& it 
follows that 

r+1 
3/f*& 

2 Mm2 

l+p Mm2 
(15) 

where 

If terms of only the first power of l-Mm2 are retained, it 
follows from equation (15) that 

M*=l---& (l-MM,?+. . . (1’3) 

Then, multiplying the right-hand side of equation (10) by 

this expression for M*, replacing B/P by & (i -Mm2)k 

from equation (14), and neglecting all terms containing 
l-M,2 to a power higher than the first yields the following 
expression for 4: 

4=x+ *(l--M-q {-x+(k+& k3) e-11 sin xf 

-& (1+2y) kzem2” sin ~a+[-& (5+4y) sin xf 

& (4+12y+9y2) sin 3x] k3ep3~)+ . . 9 (17) 

Comparison of this equation with equation (11) shows that 
the result obtained by means of the Prandtl-Busemann 
iteration methocl contains implicitly the form of the solution 
required by kansonic-flow theory. Moreover, the expres- 
sion for the function f (x,y), namely, 

.f(x, y)=-x+(k+& k3) e-u sin x+ 

& (1 +2y)k2ec2U sin 2x+[-$!$ (5+4y) sin 2+ 

& (4+12y+9y2) sin 3x1 k3e-3v+ . . . (18) 

satisfies the nonlinear differential equation (12) and the 
boundary conditions, equation (1.3), to the orcler k3. This 
fact suggests a solution for the flow over the wavy wall, in 
the neighborhood of R/lath number unity, obtained directly 
from equation (12). 

SOLUTION OF EQUATION FOR TRANSONIC FLOW PAST 
A WAVY WALL 

Equation (18) suggests the following form for a solution 
of the nonlinear differential equation (12) for transonic flow 
subject to the boundary conditions stated in equation (13): 

f(x,Y)=-x+ng*fn sin nx (1% 

where the f n’s are functions of y only. This form for f(x, y) 
is substituted into equation (12) and repeated use made of 
the following identity: 
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When the coefficients of the separate harmonic terms sin nx 
are placed equal to zero. the following system of nonlinear 
ordinary differential equations for fn results: 

fnff-n2fn=-$n go m(n-m)fmfnwm- 

Jj n go (m+l)(m+n+l)fn+lfm+n+x 

(n=l,Z, . . . L) wo 

Note that equation (20), with the right-hand side placed 
equal to zero, has a solution of the form eenu. An iteration 
procedure is then set up in such a manner that the highest 
power of k and of e-g appearing in the functions f,, is equal to 
the number designating the iteration step. Thus, the fol- 
lowing sets Of iteration equations result: 
Step 1, 

fi”-fi=o 
Step 2, 

j,“+tf,=-; f," 

Step 3, 
f1”-f,=-fif? 

f3”-9f3=-3f,f2 3 
Step 4, 

fMfz=-; f?-3fJs 

f4/‘--16fd=-6fifr4fi2 1 
Step 5, 

fir’-fi=-fifz-3f2f3 

fz”-9fa=-3fifr6fi,fa 
fj”-~5f,=-lof,.f,-15fif3 3 

Step 6, 

fP--4&f2=-; f1”-3f,f3-8f2f4 

(21) 

(2% 

(23) 

(24) 

(2 5) 

1 (26) f41’-16f~=-6.f,fa-4f~?-10f,.fj 

fir-36fca= - 1 5flfj-q jz2-24f2f4 

and so forth. 
The right-hand sides of these equations are known functions 

constructed from previously dctcrmincd quantities in accord 
with the iteration procedure adopted. 

These equations are of the second order, nonhomogeneous 
type with constant coefficients and sre readily integrat,ed. 
The resulting expressions for fi, f2, f3, f4, f5, and f6, with the 
boundary conditions (13) taken into account, are as follows: 

fi=( I-+-& k2+~~~2 k4) ke-“-[&+$$&.T k2+ 

( $+@& k2)y] “,-.‘-( -57sfix525s+&jF ‘+ 

32;256 y2+& y3) k5e-5v+ . . . rw 

j-z=[-&+&$& k2+4;;F;“62 k4+($+& k2+ 

4085 24X2562 k4) y] k2e-2v-[3~<~56+l~~~!~62 k2+ 

5+ 256 >I y2 k4e-4y- 

(2% 

12245 6245 + 79 
-144X2562-72X2562y 3x256” 

"+ 

,, 192&6 ?/3+12&56 Y4)k6e-ev+ . . 

fs=[&+2;~.-jf6z k2+(&-+72;;56 k2) y-t 

A+& k2) y2] k3e-3v-(&2+32~~56 Y+ 

117 1 
32X256 Y’J2Sm Y3) k5e-5v+ . . . 

f4=[-' 390547 
1536+720X256” 

“$py 617 
128 288X256 

k2 

(2”’ 

35251 2465 455 
90X256? +576X256 Yf 96X256 y2+ 

48gi56 y3+48ci56 y4) k6e-6v+ . 

f5=(- 38740+& l/+& ?/z+j& Y3f 

25 ~- 24X256 ’ 
4 k5ec5+ . . . 

f6=(,g;04Y+72;;5C ?/+& Y2+& Y3+ 

& y”+& y5) k6e++ . . . 

(30) 

(31) 

(32) 

Note that the functions fI, fi, and f8 include the terms of 
equation (18), obtained from equation (10) by allowing the 
Mach number to approach unity. 

Equations (27) to (32) may be considered to be essentially 
the nonlinear solution for the flow past a wavy wall of small 
amplitude for stream Mach numbers in the neighborhood of 
mlity in the form of a power series in the transonic similarity 
parameter k. Moreover, this solution is identica1 with the 
one obtained by means of the Prandtl-Busemann iteration 
equations when Mach number unit,y is approached. 

CALCULATION OF LOCAL MACH NUMBER, CRITICAL 
SIMILARITY PARAMETER, AND 

PRESSURE COEFFICIENT 

GENERAL FORMULAS 

From equation (ll), when all terms containing l-Al,a 
to a power higher than the first are neglected, the expression 
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for the fluid velocity referred to the critical speed of sound 
c* is 

p2=1+ --&-wg (33) 

Now, from equation (2), the relation between p and the 
local Mach nuinber -M is 

rfl 
42” 

TM2 

1+?-l TM2 

In the transonic approximation, the difference of any Mach 
number in the field of flow from unity is considered a small 
quantity. If terms of only the first power of l-M2 are 
retained, equation (34) yields 

p2=1+ &(M2-I)+. . . 

Hence, from equation (33), 

1-jj42=--(1-M yf 
m bx (36) 

This equation provides a means of calculating the critical 
value of the transonic simila.rity parameter; that is, the 
value of the paramet,er k for which M=l at the point of 
maximum velocity on t(hc hounclary. 

CALCULATION OF THE CRITICAL VALUE OF k 

For the family of wavy walls of small amplitude (including 
the limiting case of vanishingly small amplitude) with M= 1 
at x=0 and y=O, equation (36) yields the following relation 
for the determination of the critical value of k: 

( > 2 
bX 

=o (37) 
z-0 y=o 

By means of equation (19) together with the expression 
for fl to f6 given by equations (27) to (32), equation (37) 
yields the following power series, exact to seven terms, for 
the determination of the critical value of k for the family 
of wavy profiles: 

k+;k2+&k3+~6 k4+25;“X”5”76 k6+ 

$$;G2k6+. . .=l (38) 

The procedure adopted in order to estimate the critical 
value of k is as follows: From equation (38) the value of 
k can be found for 2, 3, 4, 5, 6, and 7 terms. These values 
of k are, respectively, 1, 0.8990, 0.8644, 0.8504, 0.8424, and 
0.8377. The last two values indicate the approach to the 
asymptotic value of k, that is, the value of k when the number 
of terms in equation (38) is infinite. If the values of k 
approach smoothly to the asymptote, the estimated critical 
value k=0.8377 is very nearly correct. 

Suppose now that both sides of equation (36) are divided 
by [(y+l)~]~/~. Then, since 

equation (36) can be written as 

l-&P 
KY+ 1) 42’3 

=-k-Z/3bf 
bX 

(39) 

The right-hand side of equation (39) is a function of z, y, 
and the parameter k only and is characteristic of the entire 
family of boundary profiles. For the family of wavy walls 
with the critical value assigned to k, equation (39) evaluated 
at the wall becomes 

l--M2 
1(-Y+ 1)42’3 =1.1253(1-0.8536 cos x-O.0989 cos 2s- 

0.0299 cos 3x-0.0122 cos 4x-0.0038 cos 5x- 
0.0017 cos St) (40) 

Table I lists the values of 
l--M2 

[(Y+ 1)42’3 for values of z be- 

tween --7 and a and figure 2 shows t.he corresponding 
curve. 

CALCULATION OF THE PRESSURE COEFFICIENT 

Bernoulli’s theorem for a compressible fluid assumes the 
following differential form along a streamline: 

d&q,,)++ pU2d (&- l)=O (41) 

where 
P pressure in fluid 
P density of fluid 
P speed of fluid 
and the subscript ~0 denotes the quantity in the undisturbed 
fluid. Now, from equation (2) the relation between the 
nondimensional speed p/U and the local Mach number M is 
given by 

(42) 

In kmcordance with the assumption of transonic-flow theory 
that all Mach numbers in the flow differ only slightly from 
unity, equation (42) becomes 

&l= -& [l-Mm2-(l-My]+. . . (43) 

where powers of 1 -Mm2 and 1 -M2 higher than the first 
have been neglected. Then with the pressure coefficient 
defined as 

Cp,M =-Prm 
- 1 

Yj P-U2 

li. _ i - _. 
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2.8 -3.2 

-24 

\ I 
.8 \ / .8 

/ \ / 

/.6 

f de9 
l-M2 (r+1)“3 

FIGURE 2.-Distribution of [(y+ 1 ) E12,3 and ~- E2/3 c p, ,\I,, at the surface for the family of ware-shaped walls. 

equation (41) takes the following form for transonic flow: 

dC,,M,= & a [l-kI-(l--M,*)] (44) 

AfLer int,egration, 

0 
Cn,Mm=- ,& [1-A4*-(1-Mm2)] 

or, with the aid of equation (36), 

CPIMm= - & (l-M,*)(l+z) 

The right-hand side of this equation can bc considered Lo be 
the first term in a power-series development of Cn,~, in 
l-Mm2. In particular, when the local Mach number first 

attains unity, then g=O at x=0, y=O and equation (45) 

becomes 

Cp,Mcr=- & (1 -X,2) (46) 

a result valid in the transonic range only. Again, if the 
thickness coefficient approaches zero as Ad,+1 and M= 1 
a,t x=0, y=O, then equaeion (46) shows that the slope 

(1 c,, M, 
FZ(l-A!f,y 

at the critical value M,=Mc,+l is a constant 

2 
-r+l’ independent of the particular family of profiles 

treated. This result is valid whether the approach to Mach 
number unity’is made from the subsonic or supersonic region. 

If both sides of equation (45) are multiplied by (r+i)““, 
e2/3 

then 
(r+‘)“” &,, = -2k-2’3 

e z/3 (1Sf) 
dX 

(47) 

where the right-hand side depends only on x, y, and the 
parameter k and is charact,eristic of the family of boundary 
profiles treated. For the family of wavy walls with the 
critical value of k chosen, equation (47) takes the following 
form at the solid surface (y=O): 

C-Y + 1Y3 
E 2r3 (7,v~~,,=-2.2507(0.8536 cos x+0.0989 cos2x+ 

0.0299 cos 3x+0.0122 cos 4x+ 
0.0038 cos 5x+0.0017 cos 6x) (48) 

Table I lists the values of (“/$,!..1’3 CD,~~fc, for values of x 

between -ir and ?r and figure 2 shows the corresponding curve. 

---.,-.. --1-111m.m1-- I  ,111, .  . I .  
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l-M2 TABLE I.-VALUES OF -__ 
[(rJrl)a]2’3 AND 

(r+l)“3 c 
---- @I3 P,M=? AT 

THE SURFACE FOR THE FAMILY OF WAVE-SHAPED WALLS 

-130 
-175 
-170 
-160 
-150 
-140 
-130 
-120 
-110 
-100 

-95 

i; 

-70 

zg 
-40 
-30 

-E 
-5 

0 

1,” 

2 

4: 

ti 

2 
90 

1;: 
110 
120 
130 
140 
1.50 
160 
170 
180 

GENERAL ANALYSIS 

An examination of the expressions for ji to jR given l)g 
equations (27) to (32) shows that the general form of j, is 

n= 1, the upper limit r of p goes from 1 to m and, if n# 1, r 
goes from 0 to 0~. 

In order to find the recursion formulas for the coefficients 
A; ;, the expression for f,, given by equation (49) is sub- 
stituted into the system of differential equations (20). The 
calculation is facilitated by the introduction of the following 
notations: 

n-1 

A; x2’%-’ ye 2 A; ; k2r 

q=o r=p 
(52) 

and 

Ay=g A$A,y, (53) q=o 

where the quantities Amgn arise from the multiplication of 

the two infinite series 2 A;e-@U and 5 A; em2pu. Note 
o=o 1)=0 

that the quantities Ama” are symmetric-with respect to the 
upper labels m and n. Then 

f,=kne-nupz A; e-z~r 

When this expression for fn is substituted into equation (20) 
and repeated use is made of the identity 

the exponential terms in y can be eliminated, and the follow- 
ing recursion formulas result: 

-2n(A;)‘+(A;l)“=-i n g: m(n-m)Am~ng-m 

(p=O; n=2,3, . . . a) (55) 
and 

4p(p+n)A::-22(2p+n)(A~)‘+(A”,)“= 

where, if p=O, the upper limit of p is n- 1, and, if p ~0, the 
- an 2 m(n-m)Am.;--m 

n&=1 
-in & m(~L+rn)k2”Av;if;y 

rn=l 

upper limit of p is 2p+n-2. The four-labeled coefficients (p=1,2, . . . co; n=1,2, . . . m) (56) 
A;: are real numbers calculated from recursion formulas 
obtained from the system of difIerential.equations (20) and Note that these recursion formulas still contain powers of y 
the boundary condition at the surface of the wavy wall. and k. Both y and k can be eliminated for given values of p 
The boundary condition at y= ~0 is automatically satisfied and recursion formulas containing only the coefficients 
by the form of fn; whereas the boundary condition at the wall A; : thus obtained. For example, consider equation (55) for 
takes the form which p=O. By repeated use of the identity 

Cfn’)u=o= -$ El n 3 (50) al DI$ ?a.~= I% I% %B #3=0 Lv=p 
Inserting the expression for fn given by equation (49) into 
equation (50) yields immediately the following results: 

the following recursion formula is obtained: 

A’O=l -2n(q+ lb% P +(a+l)(a+W,“A,;, ,“= 
00 

and 

p$i (2~+7&4+& A;; (n=l,2, . . . co) (51) 

where, if n= 1, the lower limit of p on the right-hand side is 
unity and, if nf 1, the lower limit of p is zero. Also, if 

-~n&“~l(m+l)(n-m-l) & Ar?,l:A”-y-l,Os 
t=o m=q--t a=0 

(n=2,3, . . . ~0 ; 9[=0,1,2, . . . (n-2); 

r=o,1,2,... m) (57) 



8 REPORT 1069--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

where 

A number of interesting relations can be easily obtained 
from this recursion formula. Thus, for q=n-2 and r=O, 

Then 
A6 O= 25 

4o 48x128 1 
1 A3 O=- 

9 
” 32 

A6 ‘J=-.--- 
So 5120 (58) 

A: :=A . . . . . 

From these numerical values the general form is found to be 

Similarly, for q=n-2 and T= 1, 
nn-2 

A,:, ‘i’=+ 1)!4n-1 A: : 

In a corresponding manner, more complicated expressions 
can be obtained for A,‘L~ F when r=2, 3, . . . . 

Note that in the expression for the disturbance-potential 
function f(z, y), infinite series of the type 

“7 Jd yyn-1e--nvkn+2 sin nx A,?. 1: n=1 

occur. The ratio of the (n+ 1)st and nth terms is 

Icyemu sin (n+l)s A”,+* t 
sin nx AnnI; 

In order for the series to converge, the limit of this ratio as 
n+ ~0 must be less than unity. Thus, if the maximum 

is inserted and z==O, Cauchy’s ratio 

test yields 

(59) 

Other infinite series occur in the expression forf(x,y) which 
diverge for values of the transonic similarity parmeter k 
considerably less than 4. Thus, consider the recursion 
equation (57) and take p=O and r=O. Then 

-2nA; Z+~P;~A; i= 

and 

6A: :=2A3, :+3A:: 

4A’: :=A”, :+3A: :+2(A,2 :)2 

1OAc; :=2A: :+lOA;: :+15A:: A:: 

12A; :=2AB, :+15A: :+24A,” 

. . . . . 

Also from equation (57), 

:+; (A: !3’ 

. . . . . 

and 

3OA,” :=12A,5 ,“+15A;,OA: 

484 :=20A: ;+24A$ Fj A; :+15A: :+27A3, : A; :+ 

24A4’ AZ0 20 10 

The following relations are obtained from the supplementary 
equations (51) : 

2A20=A2 00 10 O 5A,” ,“=A: ,” 

3A::=A:: 6Ai :=x4:; 

4A4”=A4 O 00 10 
. . . . . 

From these relations, together with the ones listed in equa- 
tion (58), 

1 A2 o=- 
10 8 

7 
A: +--- . . . . 

384 
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and lead to the general rule 

A;z={3n-51 
nt4n-1 (n=2, 3, . . . co) 

From equation (51), n&l :=A; g; therefore, 

(60) 

Ait1{3n-5) 
nn!4”-’ (n=2, 3, . . . co) (61) 

where, by definition, 

{3n--5}=1X4X7XlOX13X . . . X(3n--5) 

In the expression for the local Mach number in the field of 
flow given by equation (36), the expression bf/bx occurs. 
This expression, with x=0, contains infinite series of the 
type 

F=g nk”e-“uA;t g (62) 
7&=1 

and 

G= 2 n.k”e-“VA: z (63) 
n=2 

If the maximum value of eenff (= 1) and the expressions given 
by equations (60) and (61) are inserted, the Cauchy ratio 

test shows that both series converge for k<$ In particular, 

the series expression for F evaluated at the surface (y=O) 
can bc expressed in closed form. Thus, 

F=k+s {;;‘-t’ k”=2-2 (1-i k)2/’ (64) 2 A: ,” ,,-,,=A Xl3 

5 A:; k2r+4=.-& S14+; LY,~S, 
r=O 

The graph of F against k is a semicubical parabola with the 

cusp point at k=G and F=2. With the restrictsion that the 

transonic similarity parameter k be positive and that one 
and only one value of k correspond to a given value of F, 
the permissible values of k and F are confined to the part 
of the parabola lying between the origin (0,O) and the apex 
(4/3,2). The power-series expression for G  evaluated at 
the surface can also be expressed in closed form; namely, 

GE2 {3n-5j k”= 
n=2 (n- 1)!4n-’ (65) 

This expression, together with the one for F, shows clearly 
that the parameter k cannot be equal to but must be less than 
four-thirds. 

A close examination of the recursion formulas (55) and 
(56) discloses the important fact that each one of the mani- 
fold of power series in k that appear in the functions fn can 

be expressed in terms of the members of a single dominant 
set of power series. This dominant set consists of one power 
series in k from each f,,, namely, the one multiplied by e+’ 
only. According to equation (49), the members of the 
dominant set of power series are given by 

&=z A; 9 kn+lr (n=l, 2, . . . m) 036) 

Several examples are now given to illustrate this impor- 
tant observation. Consider the series that belong to the set 

g A;: kn+2r (n=2, 3, . . . a> 

From the recursion formulas, 

. . . . . 

Consider now the set 

Then 

2 A;: kn+2r (n=3, 4, . . . a) 

. . . . . 

Consider the set 

. g A;: kn+= (n=l, 2, . . . -) 

From the recursion formula (56), 

IL ._._-.- __.__---..-. .-.-. 
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Consider the set 

Then 

s A ; ,’ kn+2r (n=l, 2, . . . a) 

2 A: : k2r+1= -A Xl3 

2 A: : k2r+2= -&s+; S,YT? 

-$ A; ,’ k2r+3= -& w-g s,3s2-5 &2&-& s,s,2 

. . . . . 

Other examples are 

-& A; ,” ,$-I= -L- S15 
2048 

2 A; ; k2+l= -A s+&g s,3s, 

2 A: ,” k-& S,s-& S13S2-& S,S22-$- S13S, 

2 A:, ,” k2’+1=&5x s,s+& S1%-& S,S22$ 

& S?S2--$ s,s, 

The recognition of the existence of a dominant set of power 
series in k represents a major reduction in the complexity of 
the present problem. Thus, consider the array of infinite 
power series contained in equation (66): 

S1=A; 0” k+A;: k3+A; “, lc5+A; “3 k7+ . . . . 

S3=A:; k2+A;: k4+A:; k”+A:; k8+. . . 

S,=A;: k3+A;: kj+A,“; k’+A;: kg+. . . 

S4=A::k4+A;:k6+A::k8+&:k10+. . . 

,!?,=A:: k5+A:: k’+A: “, kg+A:: k”+ . . : 

. . . . . J 

(67) 

An examination of equations (27) to (32) shows that the 
coefficients A;; 9 of the series S, amppear to be positive and 
monotonically decreasing. The series formed from the first 
column on the right-hand side of equat.ion (67) therefore 
dominates the series formed from succeeding columns. 

Moreover, the first-column series $ & i k” has a radius of 

convergence k=% (see equation (61)). The radii of con- 

vergence of the other columnar series therefore are either 
equal to or greater than four-thirds. Similarly, an examina- 
tion of the series S, shows that the coefficients in each column 
on the right-hand side of equation (67) also seem to form 
positive and monotonically decreasing sequences. This be- 
havior means that S1 is the dominant series of the set S, and, 

in fact, of the aggregate of power series in k in the expression 
for the disturbance potential f (x, y). 

Consider now the series consisting of the first terms of the 
odd-labeled series S,, S3, S,, . . . , that is, 

@w 

According to the theory of power series (and it can be easily 
verified), the radius of convergence of this power series is 

still k=i. Now, a comparison of corresponding terms with 

the dominant series S1 shows that 

and 

Thus, if in general AA 2 >Azno+l z, then the radius of conver- 
gence of the dominant series S1 can be less than the radius 
of convergence of the comparison series given by expression 
(68) and therefore may conceivably be equal to the critical 
value k,,=O.8377, Moreover, it would then follow that the 
original Prandtl-Busemann small-perturbation method is 
valid for purely subsonic flows only. This conclusion would 
not invalidate other approaches to the transonic-flow problem 
(reference 4). 

Unfortunately, the coefficients Ai z do not conform to any 
apparent or superficial law, but perhaps a careful study of 
the recursion formulas (55) and (56) and the supplementary 
or boundarv relat.ions (51) will yield a rigorous proof of the 
foregoing statements. Otherwise, it remains to calculate a 
reasonable number of tbc coefficients AA II. For this pur- 
pose the development of complete recursion formulas simiIar 
to equation (57) for the required values of p is worth while. 
Thus, for 2, = 1, the recursion formula is 

4(n+l)& .$I-- 2(n+2) (rr+l)x A,;, ,:I 

+(a+ l)(q+2)6” -:*“A& ,:I= 

(n=1,2,. . . a; 4=0,1,2,. . . n; r=O,1,2,. . . a) 

where 

(69) 

6” --I.* -0 P -1 
(p=n-1 or n) 
@#n-l or n) 

Finally, it may be of interest to give the general formula 
for the Mach number distribution at the surface of the wavy 
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wall. Thus, by means of equations (36) and (49), REFERENCES 

M2- 1 El 
I--M,~ =-1+gknmzO(n-2nz) cos (n-2m)rP&in~2m: 

n=1 

(70) 
where II -$ denotes the integral part of n/2. 
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