637 research outputs found

    Lyman Alpha and MgII as Probes of Galaxies and their Environments

    Full text link
    Ly{\alpha} emission, Ly{\alpha} absorption and MgII absorption are powerful tracers of neutral hydrogen. Hydrogen is the most abundant element in the universe and plays a central role in galaxy formation via gas accretion and outflows, as well as being the precursor to molecular clouds, the sites of star formation. Since 21cm emission from neutral hydrogen can only be directly observed in the local universe, we rely on Ly{\alpha} emission, and Ly{\alpha} and MgII absorption to probe the physics that drives galaxy evolution at higher redshifts. Furthermore, these tracers are sensitive to a range of hydrogen densities that cover the interstellar medium, the circumgalactic medium and the intergalactic medium, providing an invaluable means of studying gas physics in regimes where it is poorly understood. At high redshift, Ly{\alpha} emission line searches have discovered thousands of star-forming galaxies out to z = 7. The large Ly{\alpha} scattering cross-section makes observations of this line sensitive to even very diffuse gas outside of galaxies. Several thousand more high-redshift galaxies are known from damped Ly{\alpha} absorption lines and absorption by the MgII doublet in quasar and GRB spectra. MgII, in particular, probes metal-enriched neutral gas inside galaxy haloes in a wide range of environments and redshifts (0.1 < z < 6.3), including the so-called redshift desert. Here we review what observations and theoretical models of Ly{\alpha} emission, Ly{\alpha} and MgII absorption have told us about the interstellar, circumgalactic and intergalactic medium in the context of galaxy formation and evolution.Comment: 59 Pages, 19 Figures, 1 Table. Accepted for publication in Publications of the Astronomical Society of the Pacifi

    Comparing BDD and SAT based techniques for model checking Chaum's Dining Cryptographers Protocol

    Get PDF
    We analyse different versions of the Dining Cryptographers protocol by means of automatic verification via model checking. Specifically we model the protocol in terms of a network of communicating automata and verify that the protocol meets the anonymity requirements specified. Two different model checking techniques (ordered binary decision diagrams and SAT-based bounded model checking) are evaluated and compared to verify the protocols

    Discovery of Multi-Phase Cold Accretion in a Massive Galaxy at z=0.7

    Full text link
    We present detailed photo+collisional ionization models and kinematic models of the multi-phase absorbing gas, detected within the HST/COS, HST/STIS, and Keck/HIRES spectra of the background quasar TON 153, at 104 kpc along the projected minor axis of a star-forming spiral galaxy (z=0.6610). Complementary g'r'i'Ks photometry and stellar population models indicate that the host galaxy is dominated by a 4 Gyr stellar population with slightly greater than solar metallicity and has an estimated log(M*)=11 and a log(Mvir)=13. Photoionization models of the low ionization absorption, (MgI, SiII, MgII and CIII) which trace the bulk of the hydrogen, constrain the multi-component gas to be cold (logT=3.8-5.2) and metal poor (-1.68<[X/H]<-1.64). A lagging halo model reproduces the low ionization absorption kinematics, suggesting gas coupled to the disk angular momentum, consistent with cold accretion mode material in simulations. The CIV and OVI absorption is best modeled in a separate collisionally ionized metal-poor (-2.50<[X/H]<-1.93) warm phase with logT=5.3. Although their kinematics are consistent with a wind model, given the 2-2.5dex difference between the galaxy stellar metallicity and the absorption metallicity indicates the gas cannot arise from galactic winds. We discuss and conclude that although the quasar sight-line passes along the galaxy minor axis at projected distance of 0.3 virial radii, well inside its virial shock radius, the combination of the relative kinematics, temperatures, and relative metallicities indicated that the multi-phase absorbing gas arises from cold accretion around this massive galaxy. Our results appear to contradict recent interpretations that absorption probing the projected minor axis of a galaxy is sampling winds.Comment: 16 pages, 11 figures, accepted for publication in MNRA

    Investigating MgII Absorption in Paired Quasar Sight-Lines

    Full text link
    We test whether the Tinker & Chen model of MgII absorption due to the gaseous halo around a galaxy can reproduce absorption in quasar pairs (both lensed and physical) and lensed triples and quads from the literature. These quasars exhibit absorption from a total of 38 MgII systems spanning z=0.043 - 2.066 with mean redshift =1.099 and weighted mean rest-frame equivalent width of 0.87 Ang. Using the Tinker & Chen model to generate simulated sight-lines, we marginalize the unknown parameters of the absorbing galaxies: dark matter halo mass, impact parameter, and azimuthal angle on the sky. We determine the ability of the model to statistically reproduce the observed variation in MgII absorption strength between paired sight-lines for different values of the gas covering fraction f_c and the characteristic length scale ell_c, within which the variation in absorption equivalent widths between sight-lines exponentially decreases. We find a best-fit f_c=0.60 \pm 0.15 and ell_c<8/h_70 kpc (1\sigma confidence limits), with smaller f_c allowed at larger ell_c. At 99.7% confidence, we are able to rule out f_c>0.87 for all values of ell_c and the region where ell_c<1.0/h_70 kpc and f_c<0.3.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in MNRAS, 1 Dec 201

    An Empirical Characterization of Extended Cool Gas Around Galaxies Using MgII Absorption Features

    Full text link
    We report results from a survey of MgII absorbers in the spectra of background QSOs that are within close angular distances to a foreground galaxy at z<0.5, using the Magellan Echellette Spectrograph. We have established a spectroscopic sample of 94 galaxies at a median redshift of = 0.24 in fields around 70 distant background QSOs (z_QSO>0.6), 71 of which are in an 'isolated' environment with no known companions and located at rho <~ 120 h^-1 kpc from the line of sight of a background QSO. The rest-frame absolute B-band magnitudes span a range from M_B-5log h=-16.4 to M_B-5log h=-21.4 and rest-frame B_AB-R_AB colors range from B_AB-R_AB~0 to B_AB-R_AB~1.5. Of these 'isolated' galaxies, we find that 47 have corresponding MgII absorbers in the spectra of background QSOs and rest-frame absorption equivalent width W_r(2796)=0.1-2.34 A, and 24 do not give rise to MgII absorption to sensitive upper limits. Our analysis shows that (1) Wr(2796) declines with increasing distance from 'isolated' galaxies but shows no clear trend in 'group' environments; (2) more luminous galaxies possess more extended MgII absorbing halos with the gaseous radius scaled by B-band luminosity according to R_gas=75x(L_B/L_B*)^(0.35+/-0.03) h^{-1} kpc; (3) there is little dependence between the observed absorber strength and galaxy intrinsic colors; and (4) within R_gas, we find a mean covering fraction of ~70% for absorbers of Wr(2796)>=0.3 A and ~80% for absorbers of Wr(2796)>=0.1 A. The lack of correlation between Wr(2796) and galaxy colors suggests a lack of physical connection between the origin of extended MgII halos and recent star formation history of the galaxies. Finally, we discuss the total gas mass in galactic halos as traced by MgII absorbers. We also compare our results with previous studies.Comment: 20 pages, 13 figures; to appear in the Astrophysical Journal 2010 May 10 issue; a version with higher resolution figures can be found at http://lambda.uchicago.edu/public/tmp/mage_apj.pd

    The Pittsburgh Sloan Digital Sky Survey MgII Quasar Absorption-Line Survey Catalog

    Full text link
    We present a catalog of intervening MgII quasar absorption-line systems in the redshift interval 0.36 <= z <= 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains > 17,000 measured MgII doublets. We also present data on the ~44,600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available on the web. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant MgII system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many MgII absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of MgII absorbers using this catalog will be presented in a subsequent paper.Comment: AJ, in pres

    The UVES Spectral Quasar Absorption Database (SQUAD) Data Release 1: The first 10 million seconds

    Full text link
    We present the first data release (DR1) of the UVES Spectral Quasar Absorption Database (SQUAD), comprising 467 fully reduced, continuum-fitted high-resolution quasar spectra from the Ultraviolet and Visual Echelle Spectrograph (UVES) on the European Southern Observatory's Very Large Telescope. The quasars have redshifts z=0z=0-5, and a total exposure time of 10 million seconds provides continuum-to-noise ratios of 4-342 (median 20) per 2.5-km/s pixel at 5500 \AA. The SQUAD spectra are fully reproducible from the raw, archival UVES exposures with open-source software, including our UVES_popler tool for combining multiple extracted echelle exposures which we document here. All processing steps are completely transparent and can be improved upon or modified for specific applications. A primary goal of SQUAD is to enable statistical studies of large quasar and absorber samples, and we provide tools and basic information to assist three broad scientific uses: studies of damped Lyman-α\alpha systems (DLAs), absorption-line surveys and time-variable absorption lines. For example, we provide a catalogue of 155 DLAs whose Lyman-α\alpha lines are covered by the DR1 spectra, 18 of which are reported for the first time. The HI column densities of these new DLAs are measured from the DR1 spectra. DR1 is publicly available and includes all reduced data and information to reproduce the final spectra.Comment: 21 pages, 18 figures. Accepted by MNRAS. All final quasar spectra, reduced contributing exposures, and supplementary material available via https://github.com/MTMurphy77/UVES_SQUAD_DR
    corecore