84 research outputs found

    Use of antipsychotics and benzodiazepines in patients with psychiatric emergencies: Results of an observational trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional antipsychotics augmented with benzodiazepines have been the standard acute treatment for psychiatric emergencies for more than 50 years. The inability of patients to give informed consent limits randomised, controlled studies. This observational study on immediate therapy for aggression and impulse control in acutely agitated patients (IMPULSE) evaluated the short-term effectiveness and tolerability of atypical and typical antipsychotic medications (AP) in a non-interventional setting.</p> <p>Methods</p> <p>This was a comparative, non-randomised, prospective, open-label, observational study. Treatment over the first 5 days was classified according to whether any olanzapine, risperidone, or haloperidol was included or not. Documentations (PANSS-excited component, CGI-aggression, CGI-suicidality, tranquilisation score) were at baseline (day 1) and days 2–6 after start of AP.</p> <p>Results</p> <p>During the short treatment-period, PANSS-EC and CGI-aggression scores improved in all cohorts. 68.7% of patients treated with olanzapine, 72.2% of patients treated with risperidone, and 83.3% of patients treated with haloperidol received concomitant benzodiazepines (haloperidol vs. non-haloperidol: p < 0.001). More patients treated with olanzapine (73.8%) were fully alert according to a tranquilisation score and active at day 2 than patients treated with risperidone (57.1%) or haloperidol (58.0%).</p> <p>Conclusion</p> <p>Current medication practices for immediate aggression control are effective with positive results present within a few days. In this study, concomitant benzodiazepine use was significantly more frequent in patients receiving haloperidol.</p

    Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles

    Get PDF
    The Acidianus hospitalis W1 genome consists of a minimally sized chromosome of about 2.13 Mb and a conjugative plasmid pAH1 and it is a host for the model filamentous lipothrixvirus AFV1. The chromosome carries three putative replication origins in conserved genomic regions and two large regions where non-essential genes are clustered. Within these variable regions, a few orphan orfB and other elements of the IS200/607/605 family are concentrated with a novel class of MITE-like repeat elements. There are also 26 highly diverse vapBC antitoxin–toxin gene pairs proposed to facilitate maintenance of local chromosomal regions and to minimise the impact of environmental stress. Complex and partially defective CRISPR/Cas/Cmr immune systems are present and interspersed with five vapBC gene pairs. Remnants of integrated viral genomes and plasmids are located at five intron-less tRNA genes and several non-coding RNA genes are predicted that are conserved in other Sulfolobus genomes. The putative metabolic pathways for sulphur metabolism show some significant differences from those proposed for other Acidianus and Sulfolobus species. The small and relatively stable genome of A. hospitalis W1 renders it a promising candidate for developing the first Acidianus genetic systems

    Viruses in extreme environments

    No full text
    The original publication is available at www.springerlink.comInternational audienceThe tolerance limits of extremophiles in term of temperature, pH, salinity, desiccation, hydrostatic pressure, radiation, anaerobiosis far exceed what can support non-extremophilic organisms. Like all other organisms, extremophiles serve as hosts for viral replication. Many lines of evidence suggest that viruses could no more be regarded as simple infectious ‘‘fragments of life'' but on the contrary as one of the major components of the biosphere. The exploration of niches with seemingly harsh life conditions as hypersaline and soda lakes, Sahara desert, polar environments or hot acid springs and deep sea hydrothermal vents, permitted to track successfully the presence of viruses. Substantial populations of double-stranded DNA virus that can reach 109 particles per milliliter were recorded. All these viral communities, with genome size ranging from 14 kb to 80 kb, seem to be genetically distinct, suggesting specific niche adaptation. Nevertheless, at this stage of the knowledge, very little is known of their origin, activity, or importance to the in situ microbial dynamics. The continuous attempts to isolate and to study viruses that thrive in extreme environments will be needed to address such questions. However, this topic appears to open a new window on an unexplored part of the viral world

    The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation

    Get PDF
    Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer

    Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of Duchenne muscular dystrophy

    Get PDF
    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles

    Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/− Mouse, a Model of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75–80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only ∼30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/− mice and in individuals with CdLS

    Co-constructing cultural ecosystem services and wellbeing through a place-based approach

    Get PDF
    Reductive practices in fisheries management have tended to focus on ecological and economic dimensions that have rendered the social and cultural importance of fishing largely invisible, at least in the context of governance and policy making. This chapter builds on 5 years’ research in the English Channel and Southern North Sea in which the authors adopted a sense of place perspective as a framework for understanding the social and cultural value of small-scale fisheries. Through a number of case studies, the chapter describes how small-scale fisheries result in a series of ‘transformations’ as the marine environment is translated into cultural ecosystem services in coastal settings giving rise to socio-cultural value. This perspective is further developed by considering the value of the social wellbeing ‘lens’ to broaden the sense of place / cultural ecosystem services framework. In pursuing ‘values’ through sense of place, cultural ecosystem services and social wellbeing we discuss how the dualistic treatment of nature and society is problematic. We conclude that a relational co-constructionist approach, although challenging, offers a way of making visible an array of social and cultural values that emerge from the activity of small-scale fisheries

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed
    corecore