262 research outputs found

    Distances in Inhomogeneous Cosmological Models

    Get PDF
    Distances play important roles in cosmological observations, especially in gravitational lens systems, but there is a problem in determining distances because they are defined in terms of light propagation, which is influenced gravitationally by the inhomogeneities in the universe. In this paper we first give the basic optical relations and the definitions of different distances in inhomogeneous universes. Next we show how the observational relations depend quantitatively on the distances. Finally, we give results for the frequency distribution of different distances and the shear effect on distances obtained using various methods of numerical simulation

    Extensions of operator algebras I

    Get PDF
    We transcribe a portion of the theory of extensions of C*-algebras to general operator algebras. We also include several new general facts about approximately unital ideals in operator algebras and the C*-algebras which they generate

    Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    Get PDF
    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parameterize the cosmic expansion by the two parameters, w0w_0 and waw_a, and the linear growth rate of density fluctuations by Linder's γ\gamma, independently. Dark energy models generically predict γ≈0.55\gamma \approx 0.55, while the DGP model γ≈0.68\gamma \approx 0.68. To determine if future imaging surveys can constrain γ\gamma within 20 percent (or Δγ<0.1\Delta\gamma<0.1), we perform the Fisher matrix analysis for a weak lensing survey such as the on-going Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the Figure of Merit (FoM) as a function of the exposure time \texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around \texp\simeq {\rm several}\sim 10 minutes; a shallow and wide survey is preferred to constrain the γ\gamma parameter. While Δγ<0.1\Delta\gamma < 0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like WFMOS and/or future CMB observations.Comment: 18 pages, typos correcte

    Testing the reliability of weak lensing cluster detections

    Get PDF
    We study the reliability of dark-matter halo detections with three different linear filters applied to weak-lensing data. We use ray-tracing in the multiple lens-plane approximation through a large cosmological simulation to construct realizations of cosmic lensing by large-scale structures between redshifts zero and two. We apply the filters mentioned above to detect peaks in the weak-lensing signal and compare them with the true population of dark matter halos present in the simulation. We confirm the stability and performance of a filter optimized for suppressing the contamination by large-scale structure. It allows the reliable detection of dark-matter halos with masses above a few times 1e13 M_sun/h with a fraction of spurious detections below ~10%. For sources at redshift two, 50% of the halos more massive than ~7e13 M_sun/h are detected, and completeness is reached at ~2e14 M_sun/h.Comment: 14 pages, 13 figures, accepted on A&

    Dark energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5

    Full text link
    We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark energy equation of state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. We implement an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-z galaxies. Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae only; the parameter uncertainties are underestimated by 10%. The weak lensing field-to-field variance pointings is 5%-15% higher than that predicted from N-body simulations. We find no bias of the lensing signal at high redshift, within the framework of a simple model. Assuming a systematic underestimation of the lensing signal at high redshift, the normalisation sigma_8 increases by up to 8%. Combining all three probes we obtain -0.10<1+w<0.06 at 68% confidence (-0.18<1+w<0.12 at 95%), including systematic errors. Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15sigma. [Abridged]Comment: 14 pages, 10 figures. Revised version, matches the one to be published in A&A. Modifications have been made corresponding to the referee's suggestions, including reordering of some section

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200

    Information Loss in Coarse Graining of Polymer Configurations via Contact Matrices

    Full text link
    Contact matrices provide a coarse grained description of the configuration omega of a linear chain (polymer or random walk) on Z^n: C_{ij}(omega)=1 when the distance between the position of the i-th and j-th step are less than or equal to some distance "a" and C_{ij}(omega)=0 otherwise. We consider models in which polymers of length N have weights corresponding to simple and self-avoiding random walks, SRW and SAW, with "a" the minimal permissible distance. We prove that to leading order in N, the number of matrices equals the number of walks for SRW, but not for SAW. The coarse grained Shannon entropies for SRW agree with the fine grained ones for n <= 2, but differs for n >= 3.Comment: 18 pages, 2 figures, latex2e Main change: the introduction is rewritten in a less formal way with the main results explained in simple term
    • 

    corecore