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We consider the extent to which future imaging surveys of galaxies can distinguish between dark
energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy
models may have similar expansion rates as models of modified gravity, yet predict different growth of
structure histories. We parametrize the cosmic expansion by the two parameters, w0 and wa, and the linear
growth rate of density fluctuations by Linder’s �, independently. Dark energy models generically predict
� � 0:55, while the Dvali-Gabadadze-Porrati (DGP) model � � 0:68. To determine if future imaging
surveys can constrain � within 20% (or �� < 0:1), we perform the Fisher matrix analysis for a weak-
lensing survey such as the ongoing Hyper Suprime-Cam (HSC) project. Under the condition that the total
observation time is fixed, we compute the figure of merit (FoM) as a function of the exposure time texp. We
find that the tomography technique effectively improves the FoM, which has a broad peak around texp ’
several� 10 min ; a shallow and wide survey is preferred to constrain the � parameter. While �� < 0:1
cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining
with a follow-up spectroscopic survey like Wide-field Fiber-fed Multi-Object Spectrograph (WFMOS)
and/or future cosmic microwave background (CMB) observations.
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I. INTRODUCTION

The existence of the mysterious cosmic acceleration is
usually ascribed to the presence of an extra component of
the Universe with a negative pressure, known as dark
energy. However, modification of the law of gravity re-
mains as another interesting and equally valid possibility.
One of the most elaborated examples is the Dvali-
Gabadadze-Porrati (DGP) cosmological model that incor-
porates the self-acceleration mechanism [1,2] without dark
energy. A fundamental question in this context is whether it
is possible to distinguish between the modified gravity and
dark energy models that have an (almost) identical cosmic
expansion history [3,4]. The answer to the question is
inevitably dependent on the specific model of dark energy
or modified gravity [5]. Thus we focus on the DGP model,
and consider if it has any observational signature that can
be distinguished from dark energy models with future
galactic surveys. While it is pointed out that the DGP
model has some theoretical inconsistency at a fundamental
level [6–8], it is still useful as an empirical prototype of

modified gravity models, and its observational consequen-
ces are discussed [3,9–11].

The important key is the growth rate of cosmological
density perturbations, which should be different in the two
models even if they have an identical cosmic expansion
history. The weak-lensing power spectrum can be sensitive
to the growth rate, while the uncertainty of the clustering
bias will be the bottleneck that makes the galaxy power
spectrum insensitive to the growth rate.

Currently several imaging and spectroscopic surveys of
galaxies are planned to unveil the origin of cosmic accel-
eration via weak-lensing and baryon acoustic oscillation
methods. The Hyper Suprime-Cam (HSC) project is a fully
funded imaging survey at the Subaru telescope, which is
expected to commission in 2011. An associated spectro-
scopic survey possibility, Wide-field Fiber-fed Multi-
Object Spectrograph (WFMOS) project, is under serious
discussion between Subaru and Gemini observatories (see
e.g. [12,13] and references therein for other projects).

In the present paper, we consider the extent to which
future imaging and spectroscopic surveys of galaxies can
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distinguish between the DGP and dark energy models.
More specifically, we empirically characterize the growth
rate of density fluctuations adopting Linder’s � parameter.
By optimizing imaging surveys and the combination with
redshift survey following the previous literature [14,15],
we consider how we can constrain the value of � from HSC
weak-lensing survey and/or WFMOS baryon acoustic os-
cillation (BAO) survey.

The present paper is organized as follows: In Sec. II, we
explain our theoretical modeling: the parametrization of
the background expansion and the modified gravity, the
Fisher matrix analysis of the weak-lensing power spec-
trum, and the modeling of the galaxy sample. A demon-
stration with the DGP model and dark energy model is also
presented. In Sec. III, our result of the Fisher matrix
analysis is presented. Section IV is devoted to summary
and conclusions. Throughout the paper, we use the units in
which the speed of light is unity.

II. THEORETICAL MODELING

In this analysis we consider a spatially flat universe for
simplicity, consisting of baryons, cold dark matter, and
dark energy. We ignore the dark energy clustering, and
assume that the spatial fluctuations entirely originate from
the matter component (i.e., baryons and dark matter). We
further model that the cosmic expansion history effectively
follows the Universe with the matter density parameter �m
and the dark energy parameter 1��m:

 H�a�2 � H2
0��ma

�3 � �1��m�a
�3�1�w0�wa�e3wa�a�1�	;

(2.1)

whereH0 � 100h km s�1 Mpc�1 is the Hubble constant, a
is the cosmic scale factor, and w0 and wa are constants
parametrizing the equation of state of dark energy [16–18]:

 p=� 
 w�a� � w0 � wa�1� a�: (2.2)

Note that we use Eq. (2.1) even in the DGP model that does
not have dark energy at all by approximating its cosmic
expansion law with the two parameters w0 and wa. In this
case, they do not have any relations to dark energy in
reality, but it is already shown that such an empirical
description provides a reasonable approximation to the
cosmic expansion in the DGP model. For definiteness,
the expansion in the DGP has the effective equation of
state (e.g., [19])

 w�a� � �
1

1��m�a�
; (2.3)

where

 �m�a� �
H2

0�ma�3

H�a�2
: (2.4)

The cosmic expansion in the DGP model is well approxi-
mated by the dark energy model with effective equation of

state with w0 � �0:78 and wa � 0:32 as long as �m �
0:27. The parametrization gives the distance redshift rela-
tion within 0.5% out to the redshift 2 [19].

A. Linder’s � parameter

According to Refs. [19–21], the linear growth factor in
the DGP and dark energy models is well approximately
expressed by

 D1�a� � exp
�Z a

0

da0

a0
��m�a

0�� � 1�
�
: (2.5)

In this description, the constant parameter � characterizes
the gravity force model, i.e., the Poisson equation.

The dark energy models with the effective equation of
state (2.2) within the general relativity are well approxi-
mated by

 � � 0:55� 0:05�1� w�z � 1�	 �w>�1�; (2.6)

 � � 0:55� 0:02�1� w�z � 1�	 �w<�1�: (2.7)

This formula reproduces the exact linear growth factor
within 0.3% (0.5%) for �1:2<w<�0:8 (� 1:5<w<
�0:5). Therefore � in dark energy models takes the value
� � 0:54–0:56 for �1:2<w<�0:8 [19–21].

On the other hand, in the DGP model, the Poisson
equation is modified in the linear regime. Then � takes a
different value from that of the dark energy model even if
the background expansion is the same (i.e. if w0 andwa are
same). Reference [21] found that in the DGP model � �
0:68 is an excellent approximation for the evolution of the
growth factor and that � varies by only 2% into the past.

The point here is that a dark energy model mimicking
the cosmic expansion history of the DGP model predicts a
different linear growth rate by ��� 0:1. In what follows,
therefore, we employ Eqs. (2.1), (2.2), (2.3), and (2.4) to
describe the expansion history and the growth of density
fluctuations, which empirically describe both the DGP and
dark energy models, and ask if it is possible to achieve the
accuracy of ��� 0:1 by optimizing future surveys of
galaxies.

B. Weak-lensing power spectrum and Fisher matrix

The optimization of imaging surveys is based on the
weak-lensing tomography method (see e.g., [22–25]). In
this methodology, one divides the entire galaxy samples in
several different redshift bins according to the weight
factor Wi�z���� for the ith redshift bin:

 Wi�z� �
1
�Ni

Z zi�1

max�zi;z�
dz0

dN�z0�
dz0

�
1�

��z�
��z0�

�
; (2.8)

where dN=dz denotes the differential number count of
galaxies with respect to redshift per unit solid angle (see
below for details), ��z� is the radial comoving distance at z,

YAMAMOTO, PARKINSON, HAMANA, NICHOL, AND SUTO PHYSICAL REVIEW D 76, 023504 (2007)

023504-2



 ��z� �
Z z

0

dz0

H�z�
�

1

H0

Z z

0

dz0�����������������������������������������������������������������������������������������������������������������
�m�1� z0�3 � �1��m��1� z0�3�1�w0�wa�e�3waz0=�1�z0�

q ; (2.9)

and

 

�N i �
Z zi�1

zi
dz0

dN�z0�
dz0

(2.10)

is the total number of galaxies in the ith redshift bin. While
imaging surveys provide photometric redshifts alone from
the multiband photometry, instead of spectroscopic red-
shifts, for galaxies, it is known that the lensing tomography
works even with relatively crude redshift information.

Assuming that the anisotropic stress is negligible, the
cosmic shear power spectrum is given as:
 

P�ij��l� �
Z
d�Wi�z����Wj�z����

�
3H2

0�m

2a

�
2

� PNonlinear
mass

�
k!

l
�
; z���

�
; (2.11)

where Pnonlinear
mass �k; z� is the nonlinear mass power spectrum

at the redshift z, k is the wave number of the three dimen-
sional coordinates, l is the wave number of the two dimen-
sion corresponding to the angular coordinates, a is the
scale factor normalized to unit at the redshift z � 0. We
compute Pnonlinear

mass �k; z� adopting the Peacock and Dodds
formula [26].

The covariance matrix for P�ij��l� is approximately given
by
 

Cov�P�ij��l�; P�mn��l0�	 �
�ll0

�2l� 1��lfsky
�Pobs
�im��l�P

obs
�jn��l�

� Pobs
�in��l�P

obs
�jm��l�	


 �ll0Cov�ij��mn��l�; (2.12)

where we define

 Pobs
�ij��l� � P�ij��l� � �ij

�2
"

�Ni
; (2.13)

fsky is the fraction of the survey area, and �" is the rms
value of the intrinsic ellipticity of randomly oriented gal-
axies, for which we adopt �" � 0:4 (see e.g., [22–24]).

Finally the Fisher matrix is estimated as

 F�� �
X
l

X
�ij��mn�

@P�ij��l�

@��
Cov�1

�ij��mn��l�
@P�mn��l�

@��
; (2.14)

where �� denote a set of parameters in the theoretical
modeling. To be more specific, we consider 7 parameters,
�, w0, wa, �m, �8 (the fluctuation amplitude at
8h�1 Mpc), h, and ns (the primordial spectral index of
matter power spectrum), assuming the other cosmological
parameters are determined from independent cosmological
data analysis.

We adopt the range of 10 � l � 104 � �Ng=35=nb�1=2

for the sum of l, where Ng is the number density of galaxy
per unit solid angle (see next subsection). We define the 3-
dimensional figure of merit (FoM) by the reciprocal of the
volume of the error ellipsoid enclosing the 1 sigma con-
fidence limit in the f�;w0; wag space, marginalizing the
Fisher matrix over the other parameters. Similarly, the 2-
dimensional figure of merit is the reciprocal of the surface
of the error ellipse enclosing the 1 sigma confidence limit
in the fw0; wag plane with � fixed.

C. Modeling galaxy sample

We assume the following form of the redshift distribu-
tion of the galaxy sample per unit solid angle

 

dN
dz
�

Ng�

z��1
0 ����� 1�=��

z� exp
�
�

�
z
z0

�
�
�
; (2.15)

where �, �, and z0 are the parameters, and Ng �R
dzdN=dz. The mean redshift may be determined by

 zm �
1

Ng

Z
dzz

dN
dz
�
z0����� 2�=��
����� 1�=��

: (2.16)

We assume thatNg and zm is related to the exposure time
texp as, following Ref. [14],

 zm � 0:9
� texp

30 min

�
0:067

; (2.17)

 Ng � 35
� texp

30 min

�
0:44

arcmin�2: (2.18)

The mean redshift zm changes from 0.72 to 1.1, and Ng
does from 7.8 to 163, as the exposure time texp changes
from 1 min to 103 min . In Ref. [14], � � 2 and � � 1:5
are adopted. However, in the present paper, we adopt � �
0:5 and � � 3.

In order to check the validity of our mock galaxy
samples, we show in Fig. 1 the two cases of � � 0:5 and
� � 3 (dotted curve), and � � 2 and � � 1:5 (dashed
curve), for exposure times of texp � 1, 5, 10, 30, 45 minutes
(from bottom to top, respectively). The solid curves show
the real redshift histograms, for the corresponding i band
magnitude limits, taken from the Canada-France-Hawaii
telescope (CFHT) photometric redshift data of [27]. These
photo-z’s were calibrated using the VIMOS VLT deep
survey (VVDS) spectroscopy and are reliable to i ’ 25
which is sufficient for this study (see [27]). The relation-
ship between magnitude limit and exposure time was
scaled from the published Subaru Suprime-Cam data of
[28]. These data are shown in Table I for the i, g, r, z
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passbands. Denoting the exposure time for the i band by
texp, the exposure time for the g band is about texpg � 3�

texp. Similarly, texpr � 1:2� texp for the r band, and texpz �

0:3� texp for the z band, respectively.
The total survey area can be expressed as

 area � 	
�
field of view

2

�
2 Ttotal

1:1�
P
j
texpj � top

; (2.19)

where we assume that the field of view of 1.5 
, the total
observation time Ttotal is fixed as 800 hours, and the over-
head time is modeled by a constant, top � 5 min , plus a
fraction (10%) of the exposure time

P
jtexpj

for one field of
view.

We consider the cases the tomography is used, which we
denote by nb � 2, nb � 3, and nb � 4. Here nb denotes
the number of the redshift bin. In the case nb � 2, the
sample is divided into the two subsamples in the range
0:05< z< zm and zm < z < 2:5, while in the case nb � 3,
we consider the three subsamples 0:05< z< 3zm=4,
3zm=4< z< 5zm=4, and 5zm=4< z< 2:5. In the case

nb � 4, we consider the four subsamples 0:05< z< 0:6�
zm, 0:6� zm < z < zm, zm < z < 1:4� zm, and 1:4�
zm < z < 2:5 (see also Table II). We also consider the
case the tomography is not used, which we denote by nb �
1, for which we do not take into account how to obtain
dN=dz, instead assuming that dN=dz is obtained by some
method.

We assume that the subsample of nb � 2 is constructed
by the two band, r and i, observation, given that the
strategy proposed in [29] is successful. The cases nb � 3
and nb � 4 are constructed by the 4 band g, i, r, z,
observation, assuming that the conventional photo-z is
successful. The case nb � 1 is based on the i band obser-
vation. We assume that 90% galaxies of i band measure-
ments dN=dz can be used as the subsample, in the case
nb � 2, 3, 4.

We use texp to represent the i band exposure time for one
field of view, then we assume

P
jtexpj

� 5:5� texp for the
cases nb � 3, 4,

P
jtexpj

� 2:2� texp for the case nb � 2,
and

P
jtexpj

� texp for the case nb � 1, respectively.
Figure 2 shows the resultant total survey area, and the

total number of galaxies as a function of the i band expo-
sure time texp, for the cases, nb � 1, 2, 3, and 4.

D. DGP model

Here we demonstrate the weak lens power spectrum of
the dark energy model and the DGP model with the same
cosmic expansion. The linear perturbation theory in the
DGP model has been extensively worked out by [11].
While more recently Koyama and Silva studied nonlinear
evolution of density fluctuations in the DGP model [30],
the nonlinear nature of the gravity in the DGP model is still
an unsolved problem. Therefore we adopt an empirical
modeling of the nonlinear growth combining the

TABLE I. Exposure time for the bands, i, g, r, z.

iAB limit i�S=N � 10� g�S=N � 5� r�S=N � 5� z�S=N � 5�

22.97 1 min 3 min 1.1 min 0.3 min
23.84 5 min 15 min 7 min 1.4 min
24.22 10 min 30 min 12 min 3.5 min
24.81 30 min 90 min 34 min 8.1 min
25.04 45 min 130 min 50 min 13 min

FIG. 2 (color online). The total survey area (thick line), and
the total number of the galaxies (thin line) as a function of the i
band exposure time texp, for the case nb � 1, 2, 3, and 4.

FIG. 1 (color online). dN=dz as a function of the exposure
time, � � 2, � � 1:5 with z0 � zm=1:41 (dashed curve), and
� � 0:5, � � 3 with z0 � zm=0:64 (dotted curve), respectively,
for the fitting function of the form (2.15), for the exposure time
texp � 1, 5, 10, 30, 45 minutes from bottom to top. The solid
curve shows the corresponding CFHT LS photo-z i band data.

YAMAMOTO, PARKINSON, HAMANA, NICHOL, AND SUTO PHYSICAL REVIEW D 76, 023504 (2007)

023504-4



Peacock-Dodds nonlinear fitting formula [26] and the lin-
ear growth rate in the DGP model [11]. As a result, our
predictions below may be inaccurate on nonlinear scales,
but our main conclusions concerning the optimization
strategy would be unlikely to be sensitive to this
approximation.

Figure 3 shows the weak shear power spectrum of the
spatially flat DGP model and the dark energy model with
the same background expansion. The cosmological pa-
rameters of both of the models are the same (�m � 0:27,
�b � 0:044, h � 0:72, �8 � 0:8, and the spectral index
ns � 0:95). To realize the same cosmic expansion history,
the effective equation of state parameter of the dark energy
is chosen as w�z� � �0:78� 0:32z=�1� z�, as mentioned
in Sec. II A. A similar computation has been already con-
sidered by [31], but our present work differs in that we use
the Peacock and Dodds formula and that we assume a
rather shallow sample of galaxies. Because the Poisson
equation of the DGP model is modified, then the difference

comes from the growth rate. In this figure we assume
30 minutes exposure time of nb � 1. The theoretical
curves and the error bars depend on the survey sample,
but we might expect that the two curves could be distin-
guished. In the next section, we examine the capability of
the differentiation.

III. RESULTS

In this section, we present our optimization analyses for
the HSC weak-lensing survey. Specifically, we fix the total
observation time of the HSC survey, Ttot as 800 hours, and
adopt a model of the background galaxy sample described
in Sec. II C for the HSC survey; in particular, the mean
redshift of galaxies zm and their surface number density Ng

are given by Eqs. (2.17) and (2.18) as a function of the
exposure time texp. In this section, we also present results in
combination with a spectroscopic survey, the WFMOS
BAO survey, which will be limited by a total observation
time (see [15] for discussion of the optimization under this
condition). Note that we also assume that the WFMOS
survey is limited by the total survey area of the HSC
imaging survey. Namely, the survey area of the WFMOS
survey must be less than or equal to that of the HSC survey,
as the HSC survey is acting as a photometric source
catalogue for the WFMOS spectroscopic survey. So, for
the WFMOS survey, we fix the same survey area as the
HSC imaging survey Eq. (2.19), and the redshift range of
galaxies 0:8 � z � 1:4 with the number density �n � 4�
10�4h3 Mpc�3 [15], which is a set of optimized survey
parameters for the spectroscopic survey.

Figure 4 shows the FoM of the 3-dimension (3D) of
f�;w0; wag, as a function of the exposure time, texp. The 3D
FoM, the reciprocal of the volume of the 1� error ellipsoid
in the f�;w0; wag space, is computed by marginalizing the
Fisher matrix of the 7 parameters over �m, �8, h, and ns,
with a fixed value for the baryon density, �b � 0:044.

The lensing tomography method with nb � 2 signifi-
cantly improves the 3D FoM, and continues to do so with
increasing nb for texp & 10 min . The peak of the FoM
systematically shifts to the shorter exposure time with
larger nb, while the peak profile is fairly broad. With
increasing nb, more information of redshift evolution of
structure can be obtained. Similarly, as texp increases, more

FIG. 3 (color online). The dark curve is the weak-lensing
power spectrum of the dark energy model with the cosmological
parameter, �m � 0:27, �b � 0:044, h � 0:72, �8 � 0:8, ns �
0:95, and the equation of state parameter of the dark energy
w0 � �0:78, wa � 0:32, while the bright curve is the flat DGP
model of the same cosmological parameters. Here we assume the
HSC like survey with texp � 30 min of the case nb � 1 (see
Sec. II for details).

TABLE II. Assumption on the subsample and measurement.

Subsample nb � 1 nb � 2 nb � 3 nb � 4

Choice of band i i, r g, r, i, z g, r, i, zP
jtexpj

texp 2:2� texp 5:5� texp 5:5� texp

Redshift bins 0:05< z < 2:5 0:05< z< zm 0:05< z < 3zm=4 0:05< z < 0:6� zm
zm < z < 2:5 3zm=4< z < 5zm=4 0:6� zm < z < zm

5zm=4< z < 2:5 zm < z < 1:4� zm
1:4� zm < z < 2:5
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information of smaller structure can be obtained. However,
these are offset by a decrease in total survey area. Namely,
observation of more bands and longer exposures consume
observation time, and the total survey area becomes
smaller. This decreases the FoM.

For comparison, we plot in Fig. 5 the 2D FoM, the
reciprocal of the area of the 1� error ellipse in the
fw0; wag plane, evaluated by marginalizing the Fisher ma-
trix of the 6 parameters (w0, wa, �m, �8, h, and ns) with
�b � 0:044 and � � 0:55 fixed. One can find the similar

features as those of the 3D FoM. This figure suggests the
three redshift bin is enough to constrain w0 andwa and that
the peak of FoM is located around texp � 10 min , and the
peak profile is very broad. The FoM of the case nb � 2 is
larger than that of nb � 3, 4. This indicates that the ob-
servation of the larger survey area with a small number of
bands (nb � 2) can be useful for the dark energy con-
straints, though an accurate-photo-z strategy is required.

Figure 6 shows the 1� error on � as a function of texp,
which is estimated by marginalizing the Fisher matrix of
the 7 parameters, �, w0, wa, �m, �8, h, and ns, over the
parameters other than �. The curve shows the error from
the weak-lensing power spectrum adopting a proposed
survey with HSC; �� � 0:3�1� can be achieved with
(without) tomography. The result indicates that the weak-
lensing survey alone cannot reach the accuracy of �� �
0:1 that is required to distinguish between the DGP and
dark energy models.

The uncertainty in � can be significantly (more than a
factor of 3) reduced by combining the baryon oscillation
features from the WFMOS survey (Fig. 7). In modeling the
galaxy power spectrum of the redshift survey, we simply
considered the linear theory specified by the 9 parameters
�, w0, wa, �m, �8, h, ns, b0, and p0, where b0 and p0 are
the parameters for the bias model, for which we adopted
the scale independent bias model with the form

 b�z� � 1� �b0 � 1��1� z�p0 : (3.1)

Here we assumed the target parameters b0 � 1:38 and
p0 � 1. For the theoretical modeling of the galaxy power
spectrum and the computation of the Fisher matrix, the

FIG. 5 (color online). Two-dimensional FoM in fw0; wag from
the Fisher matrix of the 6 parameters w0, wa, �m, �8, h. Here
the fiducial model is �CDM, with w0 � �1, wa � 0, �m �
0:27, �8 � 0:8, h � 0:72, ns � 0:95. The other parameters, � �
0:55 and �b � 0:044 are fixed.

FIG. 6 (color online). 1 sigma error in measuring � as a
function of the exposure time, obtained by marginalizing the
Fisher matrix of the 7 parameters �, w0, wa, �m, �8, h, and ns,
over the parameters other than �. The target parameters are the
same as those of Fig. 4.

FIG. 4 (color online). Three-dimensional FoM in f�;w0; wag
as a function of the i band exposure time, which is obtained from
the Fisher matrix of the 7 parameters �, w0, wa, �m, �8, h, and
ns, Here the target parameter is � � 0:55, w0 � �1, wa � 0,
�m � 0:27, �8 � 0:8, h � 0:72, ns � 0:95. The other parame-
ter, �b � 0:044 is fixed.
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range of the wave number 0:01h Mpc�1 � k �
0:2h Mpc�1 is included, (see the appendix for details).

From Figs. 6 and 7, the error of � has a minimum of texp

between several minutes and 100 minutes, depending on
the strategy. For the weak-lensing survey (HSC) alone, the
tomography technique is very effective in reducing the
error, and the result is fairly insensitive to the choice of
texp. An additional spectroscopic survey (WFMOS) signif-
icantly reduces the error. In this case, shallow surveys with
texp < 10 min provide the minimum error for �.
Especially, the case nb � 1 and nb � 2 is significantly
improved by the combination. This behavior is understood
as follows. We assume the total observation time of the
WFMOS survey is not fixed, while adopting the same
survey area as the HSC survey. Then, in these figures, the
cases nb � 1 and nb � 2 assume a larger survey area for
the redshift survey than that of the cases nb � 3 and nb �
4. However, note that the minimum is located around the
several minutes of the exposure time even for the case
nb � 3 and 4. Therefore, when considering the combina-
tion with the redshift survey, wider and shallower surveys
are indeed preferred.

Now we are in a position to answer the question: is it
possible to distinguish between the DGP and dark energy
models? For that purpose, �� & 0:1 is required. Figure 8
plots the 1 sigma error as a function of the total observation
time Ttotal, where we adopt texp � 10 min and nb � 4
(dash-dotted curve) and nb � 2 (dashed curve). The thin
curve is the result of the weak-lensing survey alone, while
the thick curve is the result combined with the redshift
survey. Note that �� is in proportion to T�1=2

total . Figure 8
suggests that the HSC survey alone may reach �� < 0:1
with Ttot � 104 h, the combination with the WFMOS sur-
vey may do so with Ttot � 103 h if we put a prior constraint
on �b.

Finally in this section, let us consider other impact that
the HSC survey may present as a test of modified gravity
models. The dash-dotted curves in Fig. 9(a) show the 1, 2,
and 3-sigma confidence contours (going from the inner-
most outward) in the w0-wa plane, by marginalizing the
Fisher matrix of the 7 parameters, �, w0, wa, �m, �8, h,
and ns, over the parameters other than w0 and wa. Here the
constraint from the future Planck survey is taken into
account by including the prior constraints ��m � 0:035,
��8 � 0:04, �w0 � 0:32, �wa � 1, �ns � 0:0035 [32].
Here the target parameters are the same as those of the
�CDM model in Fig. 4, and we fixed nb � 4 and texp �

10 min . Note that the point of the DGP model �w0; wa� �
��0:78; 0:32� is marked, and is almost near the 2 sigma
curve. This means that the HSC can distinguish between
the DGP model and the �CDM model at the 2 sigma level
by including the future constraint by the observation of the
cosmic microwave background anisotropy. Here, we fixed
the total observation time as 800 hours, then the constraint
can be improved when the total observation time is longer.
The solid curve is the combination with the WFMOS
survey, which also shows the significant improvement of
the constraint. Similarly, Fig. 9(b) shows the 1, 2, and 3-
sigma confidence contours in the w0-� plane, by margin-
alizing the Fisher matrix over the parameters other than w0

and �. The point of the DGP model �w0; �� �
��0:78; 0:68� is marked. With this figure, the constraint
is at the 1 sigma level. Then we cannot clearly distinguish
between the DGP model and the �CDM model with this
plot. These features reflect how the shear power spectrum
is sensitive to the parameters. This suggests the choice of a
projection is important for distinguishing between these
models.

FIG. 8 (color online). 1 sigma error on � as a function of the
total observation time. Here we fixed texp � 10 min and
nb � 4(dash-dotted curve) and nb � 2 (dashed curve). The
thin curve is the result with the 7 parameters of the Fisher matrix
for the lensing power spectrum, but the thick curve is the
constraint from the combined weak-lensing power spectrum
and galaxy power spectrum (from a redshift survey).

FIG. 7 (color online). Same as Fig. 6, but considering the case
of the weak-lensing power spectrum combined with the galaxy
power spectrum of the redshift survey.
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IV. SUMMARY AND CONCLUSIONS

In this paper, we investigated optimization of a weak-
lensing survey for the dark energy, and how such a survey
might be used for testing modification of the theory of
gravity. By introducing a simple model of the survey
sample as a function of the exposure time for one band
of one field of view, we investigated how the FoM and the
constraint on Linder’s � parameter depend on the exposure
time and the number of passbands. To optimize the survey
to probe modifications of gravity, we considered a figure of
merit in the space f�;w0; wag as well as in the familiar 2D
plane fw0; wag. We obtained the following results: (1) The
peak of the FoM is located at texp ’ several� 10 min for
nb � 2, 3, 4, though the peak profile is very broad. (2) The
tomography technique improves the FoM effectively when
including the parameter �. (3) The combination with the
redshift survey like the WFMOS BAO survey improves the
error on the parameter �. (4) The shallow and wide survey
is advantageous for the tomography, and has potential
when taking combination with the redshift survey into
account. (5) The HSC weak-lensing survey by itself is
not sufficient for distinguishing between the DGP model
and a dark energy model with the same background ex-
pansion, but it will be able to distinguish between the DGP
and �CDM at the 2 sigma level by including the prior
constraint from future cosmic microwave background
(CMB) observation.

We assumed a very simplified model of the survey
galaxy sample, and the error in the photometric redshift
measurement is not taken into account. Also we assumed
that the weak-lensing power spectrum of the 10 � l �

104�Ng=35=nb�
1=2 can be used. Further investigation is

needed including the modeling of the galaxy sample and
the error in measuring the photometric redshift. In the
present paper, we assumed the spatially flat universe. In
general, since the lensing power spectrum is not very
sensitive to the curvature of the Universe, then the inclu-
sion of the other parameter will degrade the constraint [33].

ACKNOWLEDGMENTS

This work is supported in part by Grant-in-Aid for
Scientific research of Japanese Ministry of Education,
Culture, Sports, Science and Technology (No. 18540277,
No. 18654047, No. 18072002, No. 17740116, and
No. 19035007), and by JSPS (Japan Society for
Promotion of Science) Core-to-Core Program
‘‘International Research Network for Dark Energy.’’ We
thank M. Takada, S. Miyazaki, H. Furusawa, K. Koyama,
B. M. Schaefer, R. Maartens, B. A. Bassett, and M.
Meneghetti for useful comments related to the topic in
the present paper. We are also grateful to A. Taruya, T.
Nishimichi, H. Ohmuro, K. Yahata, A. Shirata, S. Saito, M.
Nakamichi, and H. Nomura for useful discussions related
to the topic in the present paper. K. Y. is grateful to the
people at the Institute of Cosmology and Gravitation of
Portsmouth University for their hospitality and useful dis-
cussions during his stay.

APPENDIX A: MODELING OF THE REDSHIFT
SURVEY POWER SPECTRUM

Here we briefly review the power spectrum and
the Fisher matrix formula for a galaxy redshift survey

FIG. 9. (a, left) The 1, 2, and 3-sigma contours in the w0-wa plane. The dash-dotted curve is the result with the 7 parameters of the
Fisher matrix for the lensing power spectrum and the Planck prior constraint, and the solid curve is these constraints combined with the
galaxy power spectrum from a redshift survey. The target model is the �CDM model, then �w0; wa� � ��1; 0�, and the mark
�w0; wa� � ��0:78; 0:32� is the DGP model. Here we fixed nb � 4, texp � 10 min , and the total observation time, 800 hours. (b,
right) Same as (a), but with the contours in the w0-� plane from marginalizing the Fisher matrix of the 7 parameters over all other
parameters. The target model is the �CDM model, then �w0; �� � ��1; 0:55�, and the mark �w0; �� � ��0:78; 0:68� is the DGP
model.
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[34,35], adopted in the present paper. Here we assume
a measurement of the multipole power spectrum P l�k�
(l � 0, 2) from the galaxy redshift survey, which we theo-
retically model as

 P l�k��
1

2

Z
d


R
ds �n�s�2 �s;k;
�2P�k;
;s�Ll�
�R

ds0 �n2�s0� �s0;k;
�2
;

(A1)

where s is the coordinate of the redshift space, �n�s� is
the mean number density per unit volume,  �s; k;
�
is the weight factor, Ll�
� is the Legendre polynomial,

 is the directional cosine between k and s, and
P�k;
; s�z	� is the power spectrum at the redshift z, which
is modeled as

 

P�k;
; s�z	� �
s�z�2

��z�2
ds�z�
d��z�

Pgal

�
qk ! k


ds�z�
d��z�

; q?

! k
���������������
1�
2

q s�z�
��z�

; z
�

(A2)

with
 

Pgal�qk; q?; z� � b�z�2
�

1�
d lnD1�z�=d lna�z�

b�z�

q
k

2

q2

�
2

� PLinear
mass �q; z�; (A3)

where q2 � q
k

2 � q?
2, PLinear

mass �q; z� is the linear mass
power spectrum at the redshift z. The comoving distance
��z	 is given by

 ��z;�m;w0; wa� �
1

H0

Z z

0

dz0�����������������������������������������������������������������������������������������������������������������
�m�1� z0�3 � �1��m��1� z0�3�1�w0�wa�e�3waz0=�1�z0�

q ; (A4)

as is given in Eq. (2.9). For our fiducial model we adopt the flat �CDM model with �m � 0:27. Thus, our fiducial model is
s�z� � ��z; 0:27;�1; 0�. In the modeling of the bias, we consider the scale independent bias model in the form, Eq. (3.1).

The variance of P l�k� is given by

 �P l�k�
2 � 2

�2	�3

�Vk
Q2

l �s; k�; (A5)

where �Vk denotes the volume of the shell in the Fourier space, and we have defined

 Q 2
l �k� �

1

2

Z
d


R
ds �n�s�4 �s; k;
�4�P�k;
; s� � 1= �n�s�	2�Ll�
�	2

�
R
ds0 �n�s0�2 �s0; k;
�2	2

: (A6)

Then, we may evaluate the Fisher matrix by

 F�� ’
X
l�0;2

1

4	2

Z kmax

kmin

�Q2
l �k�	

�1 @P l�k�
@��

@P l�k�

@��
k2dk: (A7)

In the present paper, we adopt �n�s�z	� � 4� 10�4h3 Mpc�3 and  �s; k;
� � 1.
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