85 research outputs found
Perceptions college-bound seniors at Campbellsport high school have of technology education classes and factors influencing participation in those classes
Includes bibliographical references
Nitrogen Increases Early-Stage and Slows Late-Stage Decomposition Across Diverse Grasslands
To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment We determined the effects of addition of experimental nitrogen (N), phosphorus (P) and potassium plus micronutrient (Kμ) on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher order decomposition models allowed us to distinguish between the effects of nutrients on early- versus late-stage decomposition. Across continents, the addition of N (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that N enhances the early stages of above-ground plant litter decomposition across diverse and widespread temperate grassland sites but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for N effects on soil organic matter formation. For example, following N enrichment, increased microbial processing of litter substrates early in decomposition could promote the production and transfer of low molecular weight compounds to soils and potentially enhance the stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, N enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing
Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands
Anthropogenic activities are increasing nutrient inputs to ecosystems worldwide, with consequences for global carbon and nutrient cycles. Recent meta-analyses show that aboveground primary production is often co-limited by multiple nutrients; however, little is known about how root production responds to changes in nutrient availability. At twenty-nine grassland sites on four continents, we quantified shallow root biomass responses to nitrogen (N), phosphorus (P) and potassium plus micronutrient enrichment and compared below- and aboveground responses. We hypothesized that optimal allocation theory would predict context dependence in root biomass responses to nutrient enrichment, given variation among sites in the resources limiting to plant growth (specifically light versus nutrients). Consistent with the predictions of optimal allocation theory, the proportion of total biomass belowground declined with N or P addition, due to increased biomass aboveground (for N and P) and decreased biomass belowground (N, particularly in sites with low canopy light penetration). Absolute root biomass increased with N addition where light was abundant at the soil surface, but declined in sites where the grassland canopy intercepted a large proportion of incoming light. These results demonstrate that belowground responses to changes in resource supply can differ strongly from aboveground responses, which could significantly modify predictions of future rates of nutrient cycling and carbon sequestration. Our results also highlight how optimal allocation theory developed for individual plants may help predict belowground biomass responses to nutrient enrichment at the ecosystem scale across wide climatic and environmental gradients
Grassland productivity limited by multiple nutrients
Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4,​5,​6,​7,​8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment
Out of the shadows:multiple nutrient limitations drive relationships among biomass, light and plant diversity
1. The paradigmatic hypothesis for the effect of fertilisation on plant diversity represents a one-dimensional trade-off for plants competing for below-ground nutrients ( generically) and above-ground light: fertilisation reduces competition for nutrients while increasing biomass and thereby shifts competition for depleted available light. 2. The essential problem of this simple paradigm is that it misses both the multivariate and mechanistic nature of the factors that determine biodiversity as well as their causal relationships. 3. We agree that light limitation, as DeMalach and Kadmon argue, can indeed be an important factor associated with diversity loss, and we presented it as an integral part of our tests of the niche dimension hypothesis. 4. We disagree with DeMalach and Kadmon that light is the 'main' factor explaining diversity, because this misrepresents the causal structure represented in the design of our experiment in which multiple nutrient addition was the ultimate causal driver of a suite of correlated responses that included diversity and light, and especially live and dead biomass, which are the factors that control light depletion. ]5. Our findings highlight that multiple nutrient limitations can structure plant diversity and composition independently of changes in light and biomass. For example, approximately one-third of our sites showed no significant increase in biomass with greater number of added nutrients yet still lost diversity when nutrients were added. 6. The important message is that while light limitation can be an important contributor to diversity loss, it is not a necessary mechanism
Plant Species\u27 Origin Predicts Dominance and Response to Nutrient Enrichment and Herbivores in Global Grasslands
Exotic species dominate many communities; however the functional significance of species\u27 biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands
Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation
Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change – fertilisation and herbivore loss – are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics
Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands
Grasslands are subject to considerable alteration due to human activities globally,
including widespread changes in populations and composition of large mammalian
herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and
these changes likely interact with increases in soil nutrient availability. Given the scale
of grassland soil fluxes, such changes can have striking consequences for atmospheric
C concentrations and the climate. Here, we use the Nutrient Network experiment
to examine the responses of soil C and N pools to mammalian herbivore exclusion
across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized
with NPK + micronutrients). We show that the impact of herbivore exclusion on soil
C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are
smaller upon herbivore exclusion. The highest mean soil C and N pools were found in
grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in
combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion
was contingent on temperature – herbivores likely cause losses of C and N in colder
sites and increases in warmer sites. Additionally, grasslands that contain mammalian
herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the
importance of conserving mammalian herbivore populations in grasslands worldwide.
We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land–atmosphere
interactions under future climate change.National Science Foundation Research Coordination Network,
Long Term Ecological Research,
Institute on the Environment,
Strategic Resources of the Netherlands Institute of Ecology,
Research Foundation Flanders,
VENI grant,
NWO-RUBICON grant,
NWO-VENI grant,
German Centre for Integrative Biodiversity Research,
German Research Foundation (FZT 118).http://wileyonlinelibrary.com/journal/gcbpm2021Mammal Research InstituteZoology and Entomolog
Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time
Human activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems
- …