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Abstract. Human activities are enriching many of Earth’s ecosystems with biologically limiting 37 

mineral nutrients such as nitrogen (N), phosphorus (P), and potassium (K). In grasslands, this 38 

enrichment generally reduces plant diversity and increases productivity. The widely 39 

demonstrated positive effect of diversity on productivity suggests a potential negative feedback, 40 

whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising 41 

from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by 42 

accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer 43 

timeframes, nutrient addition can increase soil fertility by increasing soil organic matter and 44 

nutrient pools. We examined the effects of 5-11 years of nutrient addition at 47 grasslands in 45 

twelve countries. Nutrient enrichment increased aboveground live biomass and reduced plant 46 

diversity at nearly all sites, and these effects became stronger through time. We did not find 47 

evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on 48 

biomass, however nutrient effects on live biomass increased more slowly at sites where litter was 49 

also increasing, regardless of plant diversity.  This work suggests that short-term experiments 50 

underestimate the long-term effects of human-caused nutrient enrichment on global, grassland 51 

ecosystems. 52 

Keywords: Nutrient Network, NutNet, Community Ecology, Biodiversity, Ecosystem Ecology 53 
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INTRODUCTION 56 

Human activities have increased the input of limiting nutrients into many ecosystems through 57 

burning of fossil fuels, use of agricultural fertilizers, and other activities that create and distribute 58 

biologically available nutrients (Vitousek et al. 1997a, Vitousek et al. 1997b, Steffen et al. 2015). 59 

This enrichment can alter ecosystem productivity, biogeochemistry, species richness, and species 60 

composition (Lawes and Gilbert 1880, Vitousek et al. 1997b, Elser et al. 2007, Hillebrand et al. 61 

2007, Lewandowska et al. 2016, Simkin et al. 2016, Midolo et al. 2019). Because of the tight 62 

coupling between fluxes of inorganic and organic material and the effects of biodiversity on 63 

ecosystem processes (Hobbie 2008, Tilman et al. 2014, Hobbie 2015, Riggs et al. 2015), there is 64 

the potential for indirect effects or feedbacks that may increase or dampen the effects of global 65 

nutrient enrichment over time (Smith et al. 2009, Isbell et al. 2013a, Avolio et al. 2014, Smith et 66 

al. 2015). 67 

Experimental work in grassland ecosystems illustrates the potential for indirect effects and 68 

feedbacks to alter the impacts of nutrient enrichment over time. In many types of grasslands 69 

(e.g., alpine tundra, Africa grassveld, montane meadows, mesic grasslands, prairies, desert 70 

grasslands, and old fields), addition of limiting mineral nutrients, such as nitrogen and 71 

phosphorus, often rapidly leads to an increase in biomass production and a loss of plant diversity 72 

(Lawes and Gilbert 1880, Elser et al. 2007, Borer et al. 2014b, Fay et al. 2015, Gasarch and 73 

Seastedt 2015, Ward et al. 2017). Because of the negative effect of plant diversity loss on 74 

productivity (Reich et al. 2001, Tilman et al. 2014), nutrient-induced losses of biodiversity may 75 

diminish the effect of nutrient addition on productivity over time (Isbell et al. 2013a). Nutrient 76 

enrichment also can alter decomposition rates and carbon cycling (Knorr et al. 2005, Hobbie 77 

2008, Hobbie 2015, Riggs et al. 2015), which may change the accumulation of dead plant 78 
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biomass. This accumulated dead biomass may limit plant productivity over time by creating a 79 

physical barrier or reducing light at ground level (Seastedt et al. 1991, Foster and Gross 1998, 80 

Coleman and Levine 2007, Clark and Tilman 2010, Seabloom 2010, Hobbie 2015).  81 

Alternatively, positive feedbacks may increase the strength of nutrient effects over time. For 82 

example, increased productivity can increase soil organic matter (Conant et al. 2001, Fornara and 83 

Tilman 2012), which in turn may increase water holding and cation exchange capacity, thereby 84 

reducing leaching and promoting nutrient retention (Hobbie 2008, Fornara and Tilman 2012, 85 

Isbell et al. 2013b, Hobbie 2015), potentially leading to further increases in productivity. If 86 

nutrient effects on ecosystems develop slowly over time due to long term feedbacks (Smith et al. 87 

2009, Isbell et al. 2013a, Avolio et al. 2014, Smith et al. 2015), our understanding of nutrient 88 

effects on ecosystems may be biased, because most experiments in ecology are relatively short-89 

term (< 5 years) (Elser et al. 2007, Silvertown et al. 2010, Pierik et al. 2011, Smith et al. 2015, 90 

Hughes et al. 2017).  91 

While fertilization experiments in grasslands have found that nutrient addition often initially 92 

increases aboveground plant biomass and decreases plant diversity (Elser et al. 2007, Borer et al. 93 

2014b, Fay et al. 2015), a few longer term (> 5 yr) experiments suggest that the positive effects 94 

of nutrients on aboveground live biomass will either remain constant or decline with time 95 

(Jenkinson et al. 1994, Isbell et al. 2013a, Avolio et al. 2014), while the effects on diversity or 96 

richness may continue to increase (Isbell et al. 2013a, Harpole et al. 2016) (but see, Pierik et al. 97 

2011). However, it is difficult to draw general inference about how nutrient effects might unfold 98 

through time, because the conflicting evidence comes from experiments conducted at different 99 

sites and using different treatments and sampling methodologies. 100 
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Here we address this knowledge gap by examining how increased nutrient supply (nitrogen, 101 

phosphorus, potassium, and micronutrients) affects aboveground live biomass, dead biomass 102 

(plant litter), and diversity over time using a 5-11 year nutrient-addition experiment replicated at 103 

47 grassland sites in twelve countries on six continents that are part of the Nutrient Network 104 

(NutNet) distributed experiment (Borer et al. 2014a, Borer et al. 2017). This experimental 105 

network allows novel insights, because each site uses identical treatments and sampling 106 

methodologies, in contrast to meta-analyses in which methodological and biological signals are 107 

often confounded  (Elser et al. 2007, Gruner et al. 2008, Midolo et al. 2019). Furthermore, these 108 

treatments are replicated across a wide range of grassland ecosystems including alpine tundra, 109 

montane meadows, mesic grasslands, prairies, desert grasslands, and old fields, thereby capturing 110 

important environmental gradients of elevation (0-4241 m), latitude (38o S to 69 o N), mean 111 

annual precipitation (250 – 1900 mm yr-1), soil nutrient levels (e.g., 270-1200 ppm N, 10—230 112 

ppm P), species richness (3-26 g m-2), and aboveground live biomass (28 – 870 g m-2), our 113 

measure of net primary production. Analyses of short-term NutNet data have shown that nutrient 114 

addition generally decreases diversity and increases aboveground biomass (Elser et al. 2007, 115 

Borer et al. 2014b, Fay et al. 2015). 116 

We focus on grasslands, because these systems have been used extensively to test the interactive 117 

effects of nutrient enrichment and biodiversity on ecosystem processes (Elser et al. 2007, Tilman 118 

et al. 2014), and because grasslands account for about a third of terrestrial productivity (Chapin 119 

et al. 2002), making them important regulators of the global carbon cycle and climate. From a 120 

conservation perspective, grasslands are among the most endangered of the terrestrial ecosystems 121 

due to extensive conversion to human-dominated land uses, biological invasions, and well-122 

documented loss of diversity in response to nutrient enrichment (Hoekstra et al. 2005, 123 
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Ramankutty et al. 2008, Seabloom et al. 2013). Grasslands are also logistically tractable, as the 124 

small stature of the plants allows for smaller plots sizes. In addition, a few plant families of 125 

similar structure dominate grasslands worldwide, which makes it easier to compare results across 126 

worldwide.  127 

In our analyses, we explicitly test (1) if the strength of nutrient effects on plant biomass and 128 

diversity changes over time, (2) if nutrient-induced diversity loss reduces the positive effects of 129 

nutrient addition on plant biomass, and (3) whether the nutrient-induced accumulation of dead 130 

biomass reduces in the positive effects of nutrient addition on plant biomass? 131 

METHODS 132 

Study System and experimental design. 133 

This work was conducted within the Nutrient Network Distributed Experiment, a globally 134 

replicated nutrient and herbivore manipulation experiment (NutNet; www.nutnet.org) (Borer et 135 

al. 2014a, Borer et al. 2017). For this study, we used data from 47 sites that had been receiving 136 

nutrient addition for 5-11 years (Appendix S1: Appendix S1: Table S7). At each of these sites, 137 

we replicated an identical experiment that factorially combined three nutrient-addition treatments 138 

each at two levels (Control or Fertilized): Nitrogen Addition (+N; 10 g N m-2 yr-1 as timed-139 

release urea), Phosphorus Addition (+P; 10 g P m-2 yr-1 as triple-super phosphate), and Potassium 140 

and Micronutrient Addition (+K; 10 g K m-2 yr-1 as potassium sulfate and 100 g m-2 yr-1 of a 141 

micronutrient mix (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn, 0.05% Mo, and 142 

1% Zn). N, P, and K were applied annually, and the micronutrient mix was applied once at the 143 

start of the study to avoid toxicity of largely immobile micronutrients.  144 
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The N addition rates (10 g N m-2 yr-1) were chosen to overcome N limitation, and are higher than 145 

would be used if the goal were to mimic anthropogenic N deposition (Clark and Tilman 2008, 146 

Stevens et al. 2015). Ammonium nitrate was used in 2007 instead of urea at some sites, but there 147 

were no detectable differences between these N sources on plant biomass or diversity  (Seabloom 148 

et al. 2015).  149 

Each site was set up as a completely randomized blocked design typically with 3 replicates 150 

(ranged from 1-6). The experimental unit was a 5 x 5 m plot. 151 

Starting in the year prior to fertilization, we annually sampled aboveground plant biomass and 152 

plant community composition. Biomass was sampled by clipping all aboveground biomass (live 153 

and dead) in two 0.1 m x 1 m strips, sorting current year’s biomass (live biomass) from previous 154 

year’s biomass (dead biomass), drying the biomass to a constant mass at 60 oC, and weighing it 155 

to the nearest 0.01 g. The locations of the biomass strips were moved each year to avoid effect of 156 

the harvest on production estimates in subsequent years. We sampled plant community 157 

composition in a permanent 1 m x 1 m quadrat by visually estimating the areal cover of each 158 

species independently, such that the total summed cover may exceed 100% in multi-layer 159 

communities.  160 

We collected surface soil samples in the pre-experimental duration and every 3-5 years 161 

thereafter. Several 10 cm deep cores were combined for each plot and air dried to a constant 162 

mass. All soils were then shipped to a lab at University of Minnesota (USA) for storage and 163 

processing prior to analyses. A subsample (~80-100g) from each plot was homogenized by 164 

grinding the soil with two steel beads (Daisy Premium 3/8” steel slingshot ammo) with 90 165 

minutes of vigorous shaking using a paint shaker. Approximately 20 (18-25) mg of ground, 166 
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homogenized soils were then packed into 5 x 9 mm tin capsules for carbon and nitrogen analysis 167 

using dry combustion gas chromatography on an Elemental Analyzer (Costech ECS 4010 168 

CHNSO Analyzer, Valencia, California, USA) calibrated with the analytical standard, atropine 169 

(C17H23NO3). 20g of the ground, homogenized soils were sent to Waypoint Analytical 170 

(Memphis, TN, USA) to measure major nutrients, micronutrients, soil pH, organic matter, cation 171 

exchange capacity, and texture of the soil (percent sand, silt and clay; only measured in the 172 

Control Plots). Phosphorus, potassium, calcium, magnesium, sulfur, boron, copper, iron, 173 

manganese, zinc, and sodium (in parts per million) were measured using the Mehlich-3 method. 174 

Soil pH was measured with a water pH meter on a 1:1 soil:water suspension. Cation exchange 175 

capacity (CEC), reported here as meq/100 g (milliequivalents of charge per 100 g of dry soil), is 176 

a measure of the capacity of soil surfaces to retain cations and is used as an indicator of quality 177 

and productivity of the soil. CEC was calculated using the ppm of Ca, Mg, and K reported from 178 

the Mehlich-3 method using the following relationship: CEC = (ppm Ca / 200) + (ppm Mg / 120) 179 

+ (ppm K / 390)). Percent organic matter content in soil was measured using the Loss on Ignition 180 

(LOI) method (combustion for two hours at 400 oC). Values of organic matter reported here were 181 

not treated with acid prior to combustion. Texture was measured using the hydrometer method. 182 

In brief, the soil sample was shaken with Sodium Hexametaphosphate (HMP) solution, and then 183 

transferred to a settling cylinder and mixed. The percent sand, silt, and clay particles were 184 

calculated from hydrometer density readings taken at 40 seconds and two hours.   185 

Diversity Metrics 186 

We measured plant diversity as the Effective Number of Species based on the Probability of 187 

Interspecific Encounter (ENSPIE), as this measure provides a more scale-independent measure of 188 

potential biodiversity effects than richness and is much more robust to the effect of rare species 189 
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than species richness (Chase and Knight 2013). ENSPIE estimates the number of equally abundant 190 

species and is equivalent to the Inverse Simpson’s index of diversity. We calculated ENSPIE as 191 

1/∑ 𝑝𝑝𝑆𝑆
𝑖𝑖=1 𝑖𝑖

2 where S is the total number of species and pi is the proportion of the community 192 

cover represented by species i (Chase and Knight 2013). Simpson’s evenness (E) is directly 193 

related to ENSPIE through the relationship E = ENSPIE /S (Smith and Wilson 1996), thus we can 194 

factor diversity directly into its richness and evenness components through the relationship: 195 

ENSPIE = S * E 196 

ENSPIE was positively correlated with richness (r=0.74) but only weakly correlated with 197 

evenness (r=0.16) across all samples in our data. Richness and evenness were negatively 198 

correlated (r=-0.41). 199 

Data Analyses 200 

Ecosystem responses to nutrient enrichment could follow a variety of different shapes through 201 

time (e.g., no change or accelerating, decelerating, or linear change through time)(Smith et al. 202 

2009, Smith et al. 2015), so we fit a flexible model that allowed for nutrient effects to increase or 203 

decrease in strength through time and for the shape of these curves to vary. Considering the case 204 

where nutrient effects are getting stronger through time, we might see a number of different 205 

curve shapes:  206 

Decelerating effects through time: this would be the case where effects initially increase in 207 

strength, but this rate of change slows as the system starts equilibrating to a new level (e.g., 208 

Isbell et al. 2013a). In this case, a plot of effect size through time will be concave down.  209 



 11 

Accelerating effects through time: in this case, we would see little response for a period of time 210 

and then a rapidly increasing effect size. This could occur in a buffered system, where a 211 

treatment needs to exceed a threshold before the system changes.  In this case, a plot of effect 212 

size through time will be concave up. 213 

Linear effects through time: While unrealistic in the long-run, it is possible we could observe a 214 

linear change in effect size over the duration of the experiment.  215 

We used a statistical model that allows all of these shapes. Specifically, our statistical model of 216 

biomass or diversity change through time was as follows: 217 

log(𝑦𝑦) =  𝛽𝛽0 +  𝛽𝛽1𝑁𝑁 +  𝛽𝛽2log (𝑡𝑡) +  𝛽𝛽3log (𝑡𝑡)𝑁𝑁  218 

Where βi is the ith regression coefficient, N is a dummy variable that indicates whether a sample 219 

is from a control plot (N=0) or a nutrient addition plot (N=1), and t is the duration of the 220 

experiment (years of treatment). For control plots (N=0), our predictive equation in log space is: 221 

log(𝑦𝑦) =  𝛽𝛽0 +  𝛽𝛽2log (𝑡𝑡)  222 

and for nutrient addition plots, our predictive equation was: 223 

log(𝑦𝑦) = ( 𝛽𝛽0 +  𝛽𝛽1) + ( 𝛽𝛽2 +  𝛽𝛽3)log (𝑡𝑡)  224 

In the case where we were modeling plant biomass (y= log(biomass), β0 is the mean biomass 225 

(log g m-2) in a control plot at time = 1, β0 is the marginal increase in biomass (log g m-2) due to 226 

adding nutrients in year 1, β2 is the change in mean biomass (log g per log yr), and β3 is the 227 

marginal effect of adding nutrients on the change in mean biomass (log g per log yr). 228 
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In back-transformed space, we get following relationship: 229 

𝑦𝑦 = 𝑒𝑒  𝛽𝛽0+ 𝛽𝛽1𝑁𝑁𝑡𝑡 𝛽𝛽2+ 𝛽𝛽3𝑁𝑁 230 

For control plots (N=0), our predictive equation was: 231 

𝑦𝑦 = 𝑒𝑒  𝛽𝛽0𝑡𝑡  𝛽𝛽2 232 

In this case, if β2 < 1 the rate of biomass change through time is slowing (Case 1), if β2 > 1 the 233 

rate of biomass change through time is increasing (Case 2), and if β2 = 1 there is a linear change 234 

in biomass over time (Case 3). The mean biomass (g) in a control plot in year 1 (t=1) is eβ0. 235 

For nutrient addition plots, our predictive equation is: 236 

𝑦𝑦 = 𝑒𝑒  𝛽𝛽0+ 𝛽𝛽1𝑡𝑡  𝛽𝛽2+ 𝛽𝛽3 237 

In this case, if (β2 + β3) < 1 the rate of biomass change through time is slowing (Case 1), if 238 

(β2 + β3) > 1 the rate of biomass change through time is increasing (Case 2), and if (β2 + β3) = 1 239 

there is a linear change in biomass over time (Case 3). The mean biomass (g) in a fertilized plot 240 

in year 1 (t=1) is e(β0 + β1). 241 

 To test whether the effects of nutrient addition increased over time, we used a mixed-effects 242 

model with +N, +P, and +Kµ, and experimental duration. Experimental duration is the number of 243 

years the nutrient treatments had been applied; experimental duration was log10 transformed. We 244 

included experimental duration and site as random effects. Because of the large number of 245 

parameters, the model with effects of all 8 nutrient treatments (+N × +P × +Kµ) and their 246 

interactions with experimental duration with random slope and intercepts for each site did not 247 
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converge. For this reason, we estimated treatment differences among sites (random slopes and 248 

intercept) over time using only the Control and All Nutrient (+N, +P, and +Kµ). Model 249 

specifications in R are included with each table of regression results.  250 

We tested for interactions between nutrient addition effects on live biomass, dead biomass, and 251 

diversity over time, to determine if nutrient effects became weaker over time at sites where 252 

nutrients lead to rapid declines in diversity or increases in dead biomass. To do this, we tested for 253 

correlations between the slopes of the nutrient effect on each of these metrics and experimental 254 

duration, as estimated by the nutrient effect by experimental duration interaction. For example, 255 

we tested if sites with increasing losses of diversity through time would also eventually have 256 

weakening nutrient effects on live biomass through time. Similarly, if nutrient enrichment 257 

induced increases in dead biomass that reduced productivity, we would expect a negative 258 

correlation between the nutrient by experimental duration interaction for live and dead biomass, 259 

indicating that nutrient effects on dead biomass were increasing and nutrient effects on live 260 

biomass were decreasing over time. We tested this relationship using standardized major axis 261 

(SMA) estimation (Warton et al. 2006). SMA summarizes the relationship between two 262 

variables, as opposed to predicting the value of one variable (i.e., the dependent variable in 263 

regression) using a second variable (the independent variable in regression). We used the sma 264 

function in the smatr R package.  265 

We also used regressions to examine whether nutrient effects on live biomass, dead biomass, and 266 

plant diversity increased or decreased through time. At the site level, we included a water 267 

availability index (Mean Annual Precipitation/Potential Evapotranspiration), mean annual 268 

precipitation, mean annual temperature, mean diurnal temperature range, mean annual 269 
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temperature range, and temperature in the wettest quarter. The plot-level soil predictors were 270 

pre-treatment soil pH, total base cations (sum of Ca, Mg, and K), % soil N, and the soil C:N 271 

ratio. Note that % soil N, % soil organic matter, and % soil organic C are all highly correlated (r 272 

> 0.92 for all comparisons), so we only included % soil N in the regression models.  Similarly, 273 

cation exchange capacity and base cations are highly correlated (r = 0.93), so we only include 274 

base cations in the regression models. The plant community measures included were pre-275 

treatment live biomass, dead biomass, and plant diversity. Finally, we included the change in 276 

nutrient effect over time as described in the correlation analysis above. For example, we included 277 

the change in nutrient effect over time on dead biomass and plant diversity as explanatory 278 

variables of the change in nutrient effect over time on live biomass. In our regression of site level 279 

characteristics that could predict the change in nutrient effects over time, many of our predictor 280 

variables co-varied (e.g., pre-treatment live biomass, soil N, soil C:N, and water availability 281 

index). To account for the potential for multiple models that had similar explanatory power due 282 

to this correlation, we used a multi-model approach, as described in Grueber et al. (2011) using 283 

the dredge and model.avg functions in the MuMIn library. We standardized the input variables 284 

using the arm library. In the model averaging, we included all models within 4 AICc units of the 285 

best model. We ran these models with and without soils data, as we were missing soils data at 286 

some sites. 287 

All analyses were conducted in R (v. 3.4.1; R Foundation for Statistical Computing, Vienna, 288 

Austria). Mixed effects models were fit using the lmer function in the lme4 R library. 289 

RESULTS  290 
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In contrast to our expectations, we found increasing effects of nutrient addition on live biomass 291 

through time at most sites despite increasing losses of diversity (Figs. 1 & 2), and there was an 292 

overall significant interaction between treatment duration and fertilization (Table S2). While the 293 

nutrient effects grew stronger, the rate of change was decelerating in most cases.  Nutrient 294 

enrichment, especially the addition of N, increased live biomass but did not have a consistent 295 

effect on dead biomass and there was not an interaction between fertilization and treatment 296 

duration (Figs. 1 & 3; Appendix S1: Tables S1 & S2). The effects of nutrient enrichment on live 297 

biomass increased at most sites for up to 11 years (Fig. 1; Appendix S1: Tables S1 & S2). In 298 

contrast to the consistent effects of nutrient addition on live biomass, nutrient effects on dead 299 

biomass became stronger at some sites and weaker at others (Fig. 1; Appendix S1: Tables S1 & 300 

S2).  301 

Nutrient addition caused increasingly strong reductions in plant diversity (ENSPIE) at nearly all 302 

sites (Figs. 2 & 3; Appendix S1: Table S1 & S2), primarily due to the effects of N addition (Fig. 303 

3, Appendix S1: Table S1). This loss in diversity was primarily caused by increasing losses of 304 

richness at all sites (Figs. 2 & 3). In contrast to richness, nutrient effects on evenness did not 305 

show a consistent increase over time (Fig. 2). The change in nutrient effects on diversity over 306 

time were not correlated with change in nutrient effects on live biomass over time (Fig. 4), 307 

however there was a negative correlation between the trajectory of nutrient effects on live and 308 

dead biomass over time (Fig. 4).  309 

In addition to the negative effects of dead biomass on live biomass, we found evidence that 310 

nutrient effects on live biomass were stronger at more productive sites with higher pre-treatment 311 

biomass (Appendix S1: Fig. S6; Appendix S1: Tables S4 & S5). Similarly, we found that 312 

nutrients effects on diversity loss increased in strength faster at sites that had high diversity at the 313 
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start of the experiment (Appendix S1: Fig. S6; Appendix S1: Tables S4 & S5). Nutrient effects 314 

on dead biomass were weaker at sites with high levels of pre-treatment dead biomass when we 315 

included soil chemistry in the models which include 37 of 47 sites, but this effect was not 316 

significant for the full set of sites (Appendix S1: Fig. S6; Appendix S1: Tables S4 & S5). A 317 

potential determinant of dead biomass is domestic grazing, as the size sites with domestic grazers 318 

present had lower levels of dead biomass in control plots (p =0.011). There was no evidence that 319 

estimates of the change in nutrient effects over time were affected by among-site differences in 320 

experiment duration, which ranged from 5-11 years (Appendix S1: Tables S4 & S5). 321 

Furthermore, the change in nutrient effects over time was not dependent on a site’s climate or 322 

soil chemistry (Appendix S1: Tables S4 & S5). 323 

Nutrient addition increased soil nutrient pools, carbon, and organic matter. Specifically, N 324 

addition led to increased soil C and N (Appendix S1: Fig. S7; Appendix S1: Table S6), and P 325 

addition increased soil P, cation exchange capacity, and base cations, possibly due to the calcium 326 

(Ca) in the P source (triple-super-phosphate; Appendix S1: Fig. S7; Appendix S1: Table S6).  327 

DISCUSSION 328 

Short- and long-term studies have identified differing responses to chronic nutrient enrichment. 329 

Although an analysis of nutrient responses at 42 grassland sites in the NutNet experiment found 330 

increasing effects of fertilization on live biomass over the short-term (3 years) (Fay et al. 2015), 331 

we expected, based on previous long-term fertilization experiments, that the positive effects of 332 

nutrients on aboveground live biomass would either plateau and remain constant or decline with 333 

time (Jenkinson et al. 1994, Isbell et al. 2013a, Avolio et al. 2014). In contrast, we found that the 334 

effect of nutrient enrichment on live biomass continued to increase at nearly all sites for 11 years 335 
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(Fig. 1; Appendix S1: Table S1 & S2), despite increasing losses of plant diversity and increasing 336 

dead biomass accumulation at some sites. Accumulation of dead biomass was the strongest 337 

predictor of the trajectory of nutrient effects over time, with increased biomass accumulation 338 

reducing the effects of nutrient on live biomass. We did not find evidence that increasing losses 339 

of diversity could cause nutrient effects on biomass to decline over time.  340 

A possible mechanism explaining the increasingly strong effects of fertilization on biomass is a 341 

concomitant increase in soil nutrient pools and buildup of soil C and organic matter (Fornara and 342 

Tilman 2012, Crowther et al. 2019), which could lead to increased water holding and cation 343 

exchange capacity and greater nutrient retention (Fornara and Tilman 2012, Isbell et al. 2013b, 344 

Hobbie 2015). We found that N addition led to increased soil C and N (Appendix S1: Fig. S7; 345 

Appendix S1: Table S4), and P addition increased soil P, cation exchange capacity, and base 346 

cations, possibly due to the calcium (Ca) in the P source (triple-super-phosphate; Appendix S1: 347 

Fig. S7; Appendix S1: Table S6). These nutrient-induced alterations to soil chemistry could act 348 

to further increase productivity.  349 

While many studies have examined nutrient effects on plant productivity and biomass (Elser et 350 

al. 2007), there is little basis for a priori expectations of how nutrient effects on dead biomass 351 

accumulation would change through time, although we did expect a general coupling between 352 

live and dead biomass (Hobbie 2015, Grace et al. 2016). Dead biomass accumulation can 353 

directly reduce plant growth by acting as a physical barrier and reducing light to young plants 354 

(Foster and Gross 1998, Coleman and Levine 2007, Clark and Tilman 2010, Seabloom 2010). In 355 

the longer term, dead biomass can affect productivity through the influence of senesced plant 356 

material on nutrient cycling, either facilitating or delaying nutrient release to plants (Hobbie 357 

2015). In contrast to the consistently positive effects of nutrients on live biomass, nutrients 358 
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effects on the accumulation of dead biomass increased at some sites and decreased at others (Fig. 359 

1; Appendix S1: Table S1 & S2). In meta-analysis spanning grasslands, forests, and tundra 360 

ecosystems, N effects on decomposition has been shown to vary depending on N addition rates, 361 

ambient N deposition rates, an litter quality (e.g., lignin content) (Knorr et al. 2005). Based on 362 

this work, the N addition rate we used (10 g N m-2 yr-1) would be expected to increase 363 

decomposition rates.  364 

While we did not measure decomposition rates directly, our results suggest that nutrient addition 365 

may be increasing the rate of turnover of dead biomass, because fertilization increased biomass 366 

production and soil carbon, but it did not consistently increase total standing dead biomass. The 367 

effects of nutrients on decomposition are governed by complex feedbacks between primary 368 

productivity, plant tissue chemistry, and soil nutrient cycling (Hobbie 2008, Hobbie 2015), and 369 

the effects can vary among different locations  (Hobbie 2008). Given the potential for increased 370 

nutrient supply rates to alter decomposition and ultimately carbon storage, developing a general 371 

understanding of nutrient supply on decomposition remains an important unresolved challenge in 372 

ecosystem ecology (Hobbie 2008).    373 

Based on past work, we expected nutrients to continuously reduce diversity over time (Isbell et 374 

al. 2013a, Harpole et al. 2016), and we found this to be the case (Fig. 2; Appendix S1: Table S1 375 

& S2), primarily due to the increasingly strong effects of N addition (Appendix S1: Table S1). 376 

Declines in diversity could arise either through reduced richness, due to increased extinction or 377 

reduced colonization rates, or reduced evenness, reflecting an increasingly skewed abundance 378 

distribution of species. We found that loss in diversity in response to nutrients was driven 379 

primarily by continuing richness loss at all sites (Fig. 2). In contrast to richness, nutrient addition 380 

did not have a consistent effect on evenness (Tables S1 & S2), and nutrient effects on evenness 381 
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did not show a consistent increase over time (Fig. 2), although evenness varied widely among 382 

sites and across years and nutrient addition did change evenness at individual sites (Figure S5).  383 

Past work suggested that the positive effects of nutrient enrichment on live biomass would 384 

decline over time at sites where there was a concurrent loss in plant diversity (Isbell et al. 2013a) 385 

or increase in dead biomass. We tested for this relationship by examining the correlations 386 

between the change over time in the nutrient effects on live biomass, dead biomass, and plant 387 

diversity. We did not find evidence of a negative feedback between fertilization induced 388 

diversity loss and live biomass; live biomass continued to increase in response to nutrients for up 389 

to a decade at nearly all sites. Furthermore, sites experiencing ongoing diversity loss did not have 390 

decelerating nutrient effects on live biomass through time (Fig. 4), as would be expected if the 391 

nutrient induced diversity loss were counteracting the effects of nutrients on productivity (Isbell 392 

et al. 2013a). It is possible that diversity loss could eventually start to counteract the positive 393 

effects of nutrient on plant biomass; the experiment that found this effect had been adding 394 

nutrients for more than 25 years (Isbell et al. 2013a). However, the longest running nutrient 395 

addition experiment has not shown large shifts after more than a century (Jenkinson et al. 1994).  396 

Ultimately, standardized, long-term experiments replicated at sites representing a range of 397 

conditions are necessary to distinguish biological from methodological effects of nutrient 398 

addition among sites and studies (Borer et al. 2017). For example, Avolio et al. (2014) found that 399 

a decade of N and P addition did not alter the richness in a tallgrass prairie community, while 400 

Isbell et al. (2013a) found that the effects of nutrient addition on richness strengthened through 401 

time, but in a different tallgrass prairie using different methods. In contrast, our standardized 402 

experiment collocated at with these previous studies showed a consistent response of 403 

increasingly strong declines in richness over time (konz.us & cdcr.us; Figures S1, S3, & S4), 404 
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suggesting that methodological differences, such nutrient addition rates or sampling protocols, 405 

may explain differences in the inference between these two long-term experiments (Isbell et al. 406 

2013a, Avolio et al. 2014).   407 

Dead biomass accumulation has been shown to suppress plant recruitment in a variety of 408 

herbaceous ecosystems (van der Valk 1986, Foster and Gross 1998, Coleman and Levine 2007, 409 

Clark and Tilman 2010, Seabloom 2010), and our results supported the generality of this 410 

relationship. The smallest change in nutrient effects on live biomass over time occurred at sites 411 

where nutrient addition led to increased dead biomass accumulation (Fig. 4).  412 

Our experiment was replicated across a wide range of conditions globally, underscoring the 413 

generality of the strengthening of nutrient effects over time. At nearly all sites, nutrient effects on 414 

live biomass and diversity became stronger over time. This suggests that short-term experiments 415 

(< 5 years) will underestimate the effects of nutrient enrichment on ecosystems and communities. 416 

Experiments spanning multiple decades have shown that short-term experiments may generate 417 

biased estimates of long-term treatment effects (Reich et al. 2012, Isbell et al. 2013a), 418 

highlighting the value of long-term ecological data (Hughes et al. 2017).  419 

Over multiple decades, nutrient addition can lead to soil carbon accumulation (Fornara and 420 

Tilman 2012), which can increase soil moisture and nutrient holding capacity (Hobbie 2015). 421 

Via this pathway, plant growth may increase ecosystem productivity, rather than simply 422 

depleting limiting nutrients. In our experiment, nitrogen addition consistently increased both soil 423 

nitrogen and soil carbon across sites suggesting that nutrient enrichment could increase soil 424 

fertility over time, and potentially inducing the continued increase in live biomass in response to 425 

nutrients. 426 
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Many experiments and models have demonstrated that nutrient addition in grassland ecosystems 427 

can induce plant diversity declines (Lawes and Gilbert 1880, Miller et al. 2005, Clark et al. 2007, 428 

Harpole and Tilman 2007, Hautier et al. 2009, Borer et al. 2014c, Harpole et al. 2016, Ward et al. 429 

2017), and the few long-term experiments have shown that these effects can continue for decades 430 

(Lawes and Gilbert 1880, Jenkinson et al. 1994, Isbell et al. 2013a, Ward et al. 2017). Here we 431 

have shown that an increasing effect of nutrients on diversity loss through time is a general 432 

phenomenon in many grassland ecosystems. This result suggests that current understanding, 433 

which is largely based on short-term experiments (< 5 years) (Elser et al. 2007), may be 434 

underestimating the severity of effect of nutrient enrichment on biodiversity. The mismatch 435 

between short experimental duration and the time for ecosystems to fully respond to nutrient 436 

enrichment is particularly problematic given that human activities are continuing to increase the 437 

supplies of limiting nutrients into many of Earth’s ecosystems (Vitousek et al. 1997a, Galloway 438 

et al. 2008, Steffen et al. 2015).  439 

In interpreting our results, it is important to note that the N addition rates (10 g N m-2 yr-1) we 440 

use were chosen to overcome N limitation, and are higher than would be used if the goal were to 441 

mimic anthropogenic N deposition (Clark and Tilman 2008, Stevens et al. 2015). Lower rates of 442 

N addition would likely lead to weaker effects, though still positive, positive effects on live 443 

biomass and richness and could potentially inhibit decomposition rates (Knorr et al. 2005, Isbell 444 

et al. 2013a, Midolo et al. 2019).  445 

Human activities are concurrently altering a variety of interacting environmental factors that 446 

drive ecosystem processes and ultimately ecosystem services that are necessary for human 447 

wellbeing (Vitousek et al. 1997a, Vitousek et al. 1997b, Steffen et al. 2015), and the ecosystem-448 

level effects of many of these factors may not be fully evident for a decade or more (Reich et al. 449 
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2012, Isbell et al. 2013a). For this reason, long-term experiments are critical for predicting the 450 

effects of humans on ecological systems (Silvertown et al. 2010, Hughes et al. 2017). 451 

Nevertheless, long-term experiments in ecology remain relatively rare, and funding such 452 

experiments is increasing difficult (Silvertown et al. 2010, Hughes et al. 2017). Human impacts 453 

on ecosystems also vary spatially, and ecologists have recently started replicating experiments at 454 

global scales (Borer et al. 2014a, Borer et al. 2017). Now that some distributed experiments have 455 

been in place for more than a decade, we can ask novel questions about the factors that determine 456 

the trajectory of ecosystem response to global change  (Borer et al. 2017). Here we have shown a 457 

remarkably consistent increasing effect of nutrient addition on plant production and concomitant 458 

decline in diversity in wide array of grassland ecosystems including deserts, prairies, and alpine 459 

tundra. However, these responses were not fully coupled; nutrient-induced declines in diversity 460 

did not reduce the effects of nutrients on live biomass. These results suggest that, due to their 461 

short duration, many experiments to date have likely underestimated the effects of human driven 462 

eutrophication on biodiversity loss and ecosystem productivity. 463 
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FIGURE LEGENDS 700 

Figure 1. Effect of nutrient enrichment on live and dead aboveground plant biomass in grassland 701 

ecosystems. Colored lines indicate individual sites, and the solid black line shows the mean 702 

response across sites. Models were fit using log10 (Treatment/Control) versus log10 (Number of 703 

Years of Treatment), and back-transformed for plotting as the difference between Treatment (i.e., 704 

all nutrients added) and Control plots. Standard errors of all parameter estimates are presented in 705 

Appendix S1: Table S2, and site species models with raw data are presented in Figures S1 and 706 

S2.  707 

Figure 2. Effects of nutrient enrichment on diversity (ENSPIE), richness (S, species m-2), and 708 

evenness (ENSPIE S-1) in grassland ecosystems. Colored lines indicate individual sites, and the 709 

solid black line shows the mean response across sites. Models were fit using 710 

log10(Treatment/Control) versus log10(Number of Years of Treatment), and back-transformed for 711 

plotting as the difference between Treatment (i.e., all nutrients added) and Control plots. 712 

Standard errors of all parameter estimates are presented in Appendix S1: Table S2, and site 713 

species models with raw data are presented in Figures S3, S4, and S5. 714 

Figure 3.  Effects of nutrient addition treatments on live and dead aboveground plant biomass 715 

and diversity (ENSPIE), richness (S, species m-2), and evenness (ENSPIE S-1) in grassland 716 

ecosystems. Error bars indicate 1 standard error (SE) among site means for each treatment. 717 

Parameter estimates and standard errors for all treatment effects are shown in Appendix S1: 718 

Table S1. 719 

  720 
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Figure 4. Change over time of the effects of nutrient enrichment on live biomass, dead biomass, 721 

and diversity at individual sites (slopes in Figure 1). Values of zero (dashed lined) indicate 722 

effects that are constant over time, positive values indicate increasing effects through time, and 723 

negative values indicate decreasing effects through time. All slopes are from log10 transformed 724 

variables versus log10 transformed number of years of treatment. Diversity is measured as 725 

ENSPIE. Correlations and significant tests are based on standardized major axis (SMA) estimation 726 

and are detailed in Appendix S1: Table S3. Large open circles represent the mean value across 727 

all sites with error bars representing two standard errors of the mean (SEM).   728 
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