1,251 research outputs found

    Novel secondary somatic mutations in Ewing's sarcoma and desmoplastic small round cell tumors.

    Get PDF
    BackgroundEwing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT.MethodologyTwenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics.Principal findingsNovel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression.ConclusionsWe have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy

    Phase Ib/II Study of the Safety and Efficacy of Combination Therapy with Multikinase VEGF Inhibitor Pazopanib and MEK Inhibitor Trametinib In Advanced Soft Tissue Sarcoma.

    Get PDF
    Purpose: Pazopanib, a multireceptor tyrosine kinase inhibitor targeting primarily VEGFRs1–3, is approved for advanced soft tissue sarcoma (STS) and renal cell cancer. Downstream of VEGFR, trametinib is an FDA-approved MEK inhibitor used for melanoma. We hypothesized that vertical pathway inhibition using trametinib would synergize with pazopanib in advanced STS. Experimental Design: In an open-label, multicenter, investigator-initiated National Comprehensive Cancer Network (NCCN)-sponsored trial, patients with metastatic or advanced STS received pazopanib 800 mg and 2 mg of trametinib continuously for 28-day cycles. The primary endpoint was 4-month progression-free survival (PFS). Secondary endpoints were overall survival, response rate, and disease control rate. Results: Twenty-five patients were enrolled. The median age was 49 years (range, 22–77 years) and 52% were male. Median PFS was 2.27 months [95% confidence interval (CI), 1.9–3.9], and the 4-month PFS rate was 21.1% (95% CI, 9.7–45.9), which was not an improvement over the hypothesized null 4-month PFS rate of 28.3% (P ¼ 0.79). Median overall survival was 9.0 months (95% CI, 5.7–17.7). A partial response occurred in 2 (8%) of the evaluable patients (95% CI, 1.0–26.0), one with PIK3CA E542K-mutant embryonal rhabdomyosarcoma and another with spindle cell sarcoma. The disease control rate was 14/25 (56%; 95% CI, 34.9–75.6). The most common adverse events were diarrhea (84%), nausea (64%), and fatigue (56%). Conclusions: The combination of pazopanib and trametinib was tolerable without indication of added activity of the combination in STS. Further study may be warranted in RAS/RAF aberrant sarcomas. ©2017 AACR

    Inspiration is the major regulator of human CSF flow.

    Get PDF
    The mechanisms behind CSF flow in humans are still not fully known. CSF circulates from its primary production sites at the choroid plexus through the brain ventricles to reach the outer surface of the brain in the subarachnoid spaces from where it drains into venous bloodstream and cervical lymphatics. According to a recent concept of brain fluid transport, established in rodents, CSF from the brain surface also enters the brain tissue along para-arterial routes and exits through paravenous spaces again into subarachnoid compartments. This unidirectional flow is mainly driven by arterial pulsation. To investigate how CSF flow is regulated in humans, we applied a novel real-time magnetic resonance imaging technique at high spatial (0.75 mm) and temporal (50 ms) resolution in healthy human subjects. We observed significant CSF flow exclusively with inspiration. In particular, during forced breathing, high CSF flow was elicited during every inspiration, whereas breath holding suppressed it. Only a minor flow component could be ascribed to cardiac pulsation. The present results unambiguously identify inspiration as the most important driving force for CSF flow in humans. Inspiratory thoracic pressure reduction is expected to directly modulate the hydrostatic pressure conditions for the low-resistance paravenous, venous, and lymphatic clearance routes of CSF. Furthermore, the experimental approach opens new clinical opportunities to study the pathophysiology of various forms of hydrocephalus and to design therapeutic strategies in relation to CSF flow alterations

    Identification of the upward movement of human CSF in vivo and its relation to the brain venous system.

    No full text
    CSF flux is involved in the pathophysiology of neurodegenerative diseases and cognitive impairment after traumatic brain injury, all hallmarked by the accumulation of cellular metabolic waste. Its effective disposal via various CSF routes has been demonstrated in animal models. In contrast, the CSF dynamics in humans are still poorly understood. Using novel real-time MRI, forced inspiration has been identified recently as a main driving force of CSF flow in the human brain. Exploiting technical advances toward real-time phase-contrast MRI, the current work analyzed directions, velocities, and volumes of human CSF flow within the brain aqueduct as part of the internal ventricular system and in the spinal canal during respiratory cycles. A consistent upward CSF movement toward the brain in response to forced inspiration was seen in all subjects at the aqueduct, in 11/12 subjects at thoracic level 2, and in 4/12 subjects at thoracic level 5. Concomitant analyses of CSF dynamics and cerebral venous blood flow, that is, in epidural veins at cervical level 3, uniquely demonstrated CSF and venous flow to be closely communicating cerebral fluid systems in which inspiration-induced downward flow of venous blood due to reduced intrathoracic pressure is counterbalanced by an upward movement of CSF. The results extend our understanding of human CSF flux and open important clinical implications, including concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and idiopathic intracranial hypertension

    Fidelio

    Get PDF
    De cada obra s'ha digitalitzat un programa sencer. De la resta s'han digitalitzat les parts que són diferents.Empresa Juan A. PamiasÒpera de Ludwig van Beethoven i llibret de Joseph van Sonnleithner i Georg Friederich Treitschk

    ‘Super disabilities’ vs ‘Disabilities’?:Theorizing the role of ableism in (mis)representational mythology of disability in the marketplace

    Get PDF
    People with disabilities (PWD) constitute one of the largest minority groups with one in five people worldwide having a disability. While recognition and inclusion of this group in the marketplace has seen improvement, the effects of (mis)representation of PWD in shaping the discourse on fostering marketplace inclusion of socially marginalized consumers remain little understood. Although effects of misrepresentation (e.g., idealized, exoticized or selective representation) on inclusion/exclusion perceptions and cognitions has received attention in the context of ethnic/racial groups, the world of disability has been largely neglected. By extending the theory of ableism into the context of PWD representation and applying it to the analysis of the We’re the Superhumans advertisement developed for the Rio 2016 Paralympic Games, this paper examines the relationship between the (mis)representation and the inclusion/exclusion discourse. By uncovering that PWD misrepresentations can partially mask and/or redress the root causes of exclusion experienced by PWD in their lived realities, it contributes to the research agenda on the transformative role of consumption cultures perpetuating harmful, exclusionary social perceptions of marginalized groups versus contributing to advancement of their inclusion

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression
    corecore