34 research outputs found

    Interactions between a heavy particle, air, and a layer of liquid

    Get PDF
    As an aircraft flies through cloud at temperatures below freezing, it encounters ice particles and supercooled droplets which results in the accretion of ice onto its surfaces and hence deformation of its aerodynamic shape. This can, in worst cases, cause series accidents. Here, we focus on tackling the common situation where there is a thin layer of water on the aircraft surface and the particles are similarly thin such as to be able to interact with the water layer. Three-way interaction occurs between air, water and body motion: under suitable assumptions (including that the Reynolds and Froude numbers are large, and that the body is much denser than the air) the model allows the shape of the layer interface and pressure profile beneath the body to be calculated for a given body position. Simultaneously, this in turn allows the forces on the body to be calculated and hence the motion of the particle to be computed in full. The result is a wide range of possible motions of the particle, including both ‘sink’ cases (the particle enters the water and becomes submerged) and ‘skim’ cases (where the particle is launched back off the surface of the water following contact). The latter cases have analogy with traditional ‘stone skimming/skipping’ games. Repeated skims and significant wakes are accommodated rationally

    Dynamics of an ice partice submerged in water

    Get PDF

    On wall-ice accretion or melting in shear flow

    Get PDF
    A presentation given at the Isaac Newton Institute on 30th September 2022 by Frank Smith on new joint unpublished work with UCL PhD students T D Dang and Ellen Jolley

    A heavy body translating in a boundary layer: 'crash', 'fly away' and 'bouncing' responses

    Get PDF
    The study concerns a slender, heavy body moving with streamwise velocity in a boundary layer. Modelling assumptions on body size reduce the governing equations for the body motion to a pair of nonlinear integro-differential equations (IDEs) which displays a wide range of distinguished behaviours, including eventual collision with the wall ('crash'), escape to infinity ('fly away') and repeatedly travelling far from the wall and back again without ever colliding or escaping ('bouncing'). The paper gives a survey of the variety of behaviour, as well as asymptotic analysis and insight into each category of fluid/body interaction and the conditions under which crash, fly away and bouncing occur

    Particle movement in a boundary layer

    Get PDF
    The study here is concerned with a thin solid body passing through a boundary layer or channel flow and interacting with the flow. Relevant new features from modelling, analysis and computation are presented along with comparisons. Three scenarios of such fluid-body interactive evolution in two-dimensional settings are considered in turn, namely a long body translating upstream or downstream, a long body with little or no translation and a short body with or without translation. The main progress and findings concern predictions of the time taken by the body to traverse the flow and impact upon the underlying wall, the delicate behaviour at the onset of impact, the dependence on parameters such as the initial conditions and the mass and shape of the body, and the influence of streamwise translation of the body in the surrounding fluid flow

    Assessment of Symptom, Disability, and Financial Trajectories in Patients Hospitalized for COVID-19 at 6 Months

    Get PDF
    IMPORTANCE: Individuals who survived COVID-19 often report persistent symptoms, disabilities, and financial consequences. However, national longitudinal estimates of symptom burden remain limited. OBJECTIVE: To measure the incidence and changes over time in symptoms, disability, and financial status after COVID-19-related hospitalization. DESIGN, SETTING, AND PARTICIPANTS: A national US multicenter prospective cohort study with 1-, 3-, and 6-month postdischarge visits was conducted at 44 sites participating in the National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Network\u27s Biology and Longitudinal Epidemiology: COVID-19 Observational (BLUE CORAL) study. Participants included hospitalized English- or Spanish-speaking adults without severe prehospitalization disabilities or cognitive impairment. Participants were enrolled between August 24, 2020, and July 20, 2021, with follow-up occurring through March 30, 2022. EXPOSURE: Hospitalization for COVID-19 as identified with a positive SARS-CoV-2 molecular test. MAIN OUTCOMES AND MEASURES: New or worsened cardiopulmonary symptoms, financial problems, functional impairments, perceived return to baseline health, and quality of life. Logistic regression was used to identify factors associated with new cardiopulmonary symptoms or financial problems at 6 months. RESULTS: A total of 825 adults (444 [54.0%] were male, and 379 [46.0%] were female) met eligibility criteria and completed at least 1 follow-up survey. Median age was 56 (IQR, 43-66) years; 253 (30.7%) participants were Hispanic, 145 (17.6%) were non-Hispanic Black, and 360 (43.6%) were non-Hispanic White. Symptoms, disabilities, and financial problems remained highly prevalent among hospitalization survivors at month 6. Rates increased between months 1 and 6 for cardiopulmonary symptoms (from 67.3% to 75.4%; P = .001) and fatigue (from 40.7% to 50.8%; P \u3c .001). Decreases were noted over the same interval for prevalent financial problems (from 66.1% to 56.4%; P \u3c .001) and functional limitations (from 55.3% to 47.3%; P = .004). Participants not reporting problems at month 1 often reported new symptoms (60.0%), financial problems (23.7%), disabilities (23.8%), or fatigue (41.4%) at month 6. CONCLUSIONS AND RELEVANCE: The findings of this cohort study of people discharged after COVID-19 hospitalization suggest that recovery in symptoms, functional status, and fatigue was limited at 6 months, and some participants reported new problems 6 months after hospital discharge

    An interdisciplinary intervention to prevent falls in community-dwelling elderly persons: protocol of a cluster-randomized trial [PreFalls]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevention of falls in the elderly is a public health target in many countries around the world. While a large number of trials have investigated the effectiveness of fall prevention programs, few focussed on interventions embedded in the general practice setting and its related network. In the Prevent Falls (PreFalls) trial we aim to investigate the effectiveness of a pre-tested multi-modal intervention compared to usual care in this setting.</p> <p>Methods/Design</p> <p>PreFalls is a controlled multicenter prospective study with cluster-randomized allocation of about 40 general practices to an experimental or a control group. We aim to include 382 community dwelling persons aged 65 and older with an increased risk of falling. All participating general practitioners are trained to systematically assess the risk of falls using a set of validated tests. Patients from intervention practices are invited to participate in a 16-weeks exercise program with focus on fall prevention delivered by specifically trained local physiotherapists. Patients from practices allocated to the control group receive usual care. Main outcome measure is the number of falls per individual in the first 12 months (analysis by negative binomial regression). Secondary outcomes include falls in the second year, the proportion of participants falling in the first and the second year, falls associated with injury, risk of falls, fear of falling, physical activity and quality of life.</p> <p>Discussion</p> <p>Reducing falls in the elderly remains a major challenge. We believe that with its strong focus on a both systematic and realistic fall prevention strategy adapted to primary care setting PreFalls will be a valuable addition to the scientific literature in the field.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01032252">NCT01032252</a></p

    Application of MLST and Pilus Gene Sequence Comparisons to Investigate the Population Structures of Actinomyces naeslundii and Actinomyces oris

    Get PDF
    Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore