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1.   Background  / aircraft icing

•Icing occurs during flight through clouds at or below freezing

•Supercooled water droplets impinge upon forward facing parts of the 

vehicle

•This water then freezes, either immediately on impact or after 

spreading back along the wing



Engine icing.



Modelling icing

There are many important 

parameters including:

• Droplet size (or range of 

sizes)

• Air Temperature

• Air Speed

• Water content of the cloud

• Local geometry



20 micron 

droplets

T=-6.6oC

T=-12.2oC

T=-16.6oC

Existing models 

work well for 

small droplets 

(<40 microns)



Droplet distortion

FLOW

SOLID, FLEXIBLE OR WATER-COVERED SURFACE

Skimming body

Luxford & Hammond 

Hicks & FTS

Body or ice particle

Droplet onto roughness

Ellis & FTS

FTS et al

ALSO ALLOW FOR WATER LAYERS AND ROUGH SURFACES



2. Pre-impact behaviour  -- e.g. particles in boundary layers

 Showing some recent and ongoing work on particles 

(Ellen Jolley, Ryan Palmer) and droplets (Nat Henman, 

Manish Tiwari)



Thin particle travelling through boundary layer with Ellen Jolley 2022 JFM

JFM

Particle /body hits wall

over this time scale

Body flies away

Body bounces repeatedly



Allowing for thin water layer

Air flow  

Water flow  

Reduced equations in air

Reduced equations in water (different density)



The body may fly away (as seen previously)

Or it may skim (as below)

Or it may hit the substrate and bounce

Or it may sink

Works with Ellen Jolley and Ryan Palmer 



With Nat Henman and Manish Tiwari

Free-surface solution for a droplet impact onto a surface 

(a) droplet free-surface (white), lubricant free-surface (yellow), velocity magnitude field (colour). 
(b) droplet free-surface (blue), lubricant free-surface (red), surface textures (black), with splash jet tip coordinates.



• WATER:-

div u = 0

ut + (u.grad)u =  - gradp/ρ + g + ν(T) Δ u

Tt + (u.grad)T =  k Δ T

• FREEZING:-

Move ice boundary: change of state involving latent heat

Allow a ‘nucleation layer’ of ice roughness at the bottom of the water layer

• NUMERICAL METHOD:-

Simulations use VOF / PLIC (piecewise linear interpolation calculation)

3.  Droplets, impacts and ice growth



 Simulation for 

temperature

Quero et al (2006)

Water droplet at – 10 degrees C

Water film at 1 degree C

50 ice crystals at – 0.1 degrees C

The crystals grow into each other 

and the ice front smooths

The ice growth : -



More analytical approach :

Ice growth on a cold surface (post-impact)

Small-time analysis as per Wagner et al, with viscous and thermal effects

Water 

droplet

Ice /roughness

Solid surface
Water

from droplet                          

Simple form : -

Ice grows here Air or void

t < 0

t > 0

John Elliott & FTS 



There are many parameters : -
Re (~ 104-5), Fr (~ 107), We (~ 105-7) 
σ (Prandtl, 7-13)
St (Stefan, 10-2-10)
β (kinetic underheating)

Main findings are : -
- icing can accelerate or decelerate the spreading of the droplet
- multi-structure contains restricted regions of turbulence
- parabolic shape of ice in certain conditions
- connection with experiments



Variation of ice thickness (roughness) with time :   

Symbols (experiments); red curves (maths predictions)

A
BCRough

-ness

(mm)

Time (min)

1

0
63

0.5



4. Melting or growing wall-ice in shear flow

With T D Dang 

& Ellen Jolley

 

Water flow 
u* = O(1) 
with shear 

          COLD WARM WALL 

ICE :  STEP-UP or HUMP 

FIG1 

x* = x0* 

This study is on the melting or possible accretion of 
wall-mounted ice deep inside a boundary layer. 

FIG 1a



The configuration has water flow past a slender ice 

hump of relatively small finite length on a flat wall (or a 

step up), with the water being warmer than the ice.

The wall is at the same temperature as the oncoming 

water except underneath the ice where the temperature 

of the wall is the same as that of the ice; a temperature-

adjustment region may also be present in the wall just 

upstream and downstream of the ice hump. 

The aim is to find out if the whole ice hump melts, in 

what manner and how long it takes, and also whether 

accretion may take place instead.



Non-dimensional Navier-Stokes and thermal equations:

div u* = 0, Du* /Dt* = – grad p* + Re – 1 del2 u*,    

Dθ* /Dt* = (σ Re) – 1 del2 θ* .  

Here Re is the Reynolds number and σ is the Prandtl number. 

• The boundary conditions on the unknown ice surface y* = f*(x*, t*) lying 
between x* = x0* and x* = x1* say are

u* + f*x*  v* = 0, v* – f*x*  u* = (1 – r*) f*t* ,  

θ* = – 1

Stefan condition on heat transfer ,  

for x0* < x* < x1*.

• On the fixed wall y* = 0 for x* < x0* and for x* > x1* we have the constraints 
of no slip and prescribed temperature,

u* = v* = 0, θ* = c*(x*) .  



The factor r* denotes the ice density relative to the water density. 

The prescribed wall temperature c* is assumed to tend to zero far 
upstream. It is also assumed to be continuous, implying in particular that 
c* = – 1 at the ends x0*, x1* of the ice hump. 

Far-field conditions on velocity, pressure and temperature associated with 
matching to the remainder of the flow field are also required in general.

Parameter values:-

Re (~ 104-5), Fr (~ 107), We (~ 105-7) 

σ (Prandtl number, 7- 8 for water at 18 degrees C)

St (Stefan number, 10-2-10)



For large Reynolds numbers the scenario of interest occurs close to the wall within a 

boundary layer whose length and height scales are of O(1) and Re – ½ respectively whereas the 
length scale of the ice hump (or its front) is small. 

Locally the ice surrounds the position x* - x0* = Δ x  close to the wall:-

A local scaling of velocity, pressure, temperature, space and time applies. 

 

Local flow 
u = O(1) 
with uniform shear 

          COLD WARM WALL 

ICE :  STEP-UP or HUMP 

FIG1b 

x = 0 



Now the governing equations reduce to

ux + vy = 0 ,  

uux + vuy = – px(x, t) + uyy ,  

uθx + vθy = σ – 1 θyy ,  

with p = p(x, t) being independent of y because of the normal momentum balance. 

The boundary conditions become

u – λy → 0, θ  – φy → 0 as y → ꝏ ,  

u = v = 0, θ = c(x) at y = 0 for x < 0 or x > 1 ,  

u = v = 0, θ = – 1 at y = f(x, t) for 0 < x < 1 ,  

B ft = – θy at y = f(x, t) for 0 < x < 1 .  



• B = 1 without loss of generality.    

• The given function c(x) is the scaled form of the wall temperature and is 
continuous, with c(0) = c(1) = – 1 and c(ꝏ) = c( – ꝏ) = 0. The constant factors λ, φ 
are present because of the locally uniform shear flow and heat transfer from the 
boundary layer above the local region. 

• The far field here has (u, v, p, θ) = (λy, 0, 0, φy) and, although λ is positive for the 
current fluid flow from left to right, the heat transfer contribution φ can be 
positive or negative. 

• The local flow and thermal balances in (2.5b, c) are quasi-steady due to the 
assumption of slow erosion of the ice hump. Ours is a basic case: no kinetic 
underheating, etc. 



The aim is to determine the flow and temperature properties and, especially, the 
evolution of the ice shape and the wall shear. 

The lack of upstream influence provided the flow is forward (u positive) 
somewhat simplifies the task of solving. 

On the other hand algebraic decay is found in the temperature field at large y 
which somewhat complicates the task. 

We seek an analytical solution first for small disturbances to the far-field flow. 



Linearized solution for small heights.

If the ice height f is small, say f = hf1, 

(u, v, p) = (λy, 0, 0) + h(u1, v1, p1) + …, θ = O(1) .  

THIS LEADS US TO A LINEAR SYSTEM:-

u1x + v1y = 0 ,  

λy u1x + v1 λ = – p1x (x, t) + u1yy ,  

λy θx = σ – 1 θyy ,  

subject to 

u1 → 0, θ  – φy → 0 as y → ꝏ ,  

u1 = v1= 0, θ = c(x) at y = 0 for x < 0 or x > 1 ,  

u1 = – λf1, v1 = 0, θ = – 1 at y = 0 for 0 < x < 1 ,  

f1t’ = – θy at y = 0 for 0 < x < 1 ,  

with t set to hBt’ with t’ of O(1), corresponding to faster evolution now.



The solution for the thermal behaviour is obtainable through a Fourier 

transform in x, giving

(θ  – φy) (FT) = C(FT) Ai( (i α λ σ) 1/3 y) ,  

f1t’ = RHS , 

where (FT) denotes the transform, α is the transform variable and Ai is the 

Airy function. The function C(x) is c(x) for x < 0, x > 1 and – 1 for 0 < x < 1, and 

RHS = – φ – Ai′(0) (λ σ) 1/3   ʃ(a, x) (x – s) – 1/3 c ′ (s) ds  / (Ai(0) Γ(2/3)) ,  

with x restricted to 0 < x < 1. (For other x values, the function – STUFF 

determines the scaled heat transfer at the wall.) Hence 

f(x, t’) = f(x, 0) + (RHS) t’ if f>0, and f(x, t’) = 0 otherwise,  

gives the ice shape, with allowance made for complete melting.

In this linearized regime the background fluid flow determines the coefficients 

λ, φ and these then determine the thermal response, which then determines 

the shape evolution, which then determines the flow perturbation.







Nonlinear solution for medium heights.

Use is made of the Prandtl transposition in which 

y = f + y**, v = fxu + v**, 

leaving (2.5a-c) intact except for the replacement of y by y** and v by v**. 

The boundary conditions become  (ignoring asterisks)

u – λy → λf, θ  – φy → φf as y→ ꝏ , 

u =  v =  0, θ = c(x) at y = 0 for x < 0 or x > 1 , 

u =  v =  0, θ = – 1 at y = 0 for 0 < x < 1 , 

B ft = – θy at y = 0 for 0 < x < 1 , 

Solutions are shown below, with σ = 5 and φ = 0.



Steps

Erosion point agrees with linear result



Humps



Velocity and temperature

profiles for case h = 1

Shows flow reversal

and eddy formation



Further analyses

For steps at large times, xerosion ~ t3

Large σmulti-structure

For any icing shapes, small t origin shift of erosion point

Final behaviour for step and hump cases



Small-time behaviour.

Consider the early behaviour for the basic case of no background heat transfer: 

(u, v, θ, p, f) = (u0, v0, θ0, p0(x), f0(x)) + t (u1, v1, θ1, p1(x), f1(x)) + … .  

Here the subscript 0 denotes the initial state of flow and temperature over the 

initial ice hump F0(x). The perturbations with subscript unity then satisfy a linear 

system. In particular

f1 = – θ0y at y = 0,

confirming that the main thermal properties control the temporal change in the 

ice shape initially. 



Of interest is the response near the beginning of the ice. 

There f0(x) is (say) linear in x whereas typically f1(x) is O(x -1/3 ) , since θ is O(1) from the 

surface condition and y is of order x 1/3. Hence the ice shape takes the form O(x) + O(x -1/3 t) 

locally, implying that there exists a small subzone close to the beginning where x is O(t 3/4). 

In the subzone, 

x = t 3/4 x~, y = t ¼ y~, 

u = λ t ¼ y~ + t ¾ u~ + …, p = … , f = t 3/4 f~(x~), θ = O(1) , 

The thermal equation becomes or remains 

λy θx = σ – 1 θyy ,

subject to matching and boundary conditions. A similarity solution holds,

θ = q(η) ; η = y~ / x~ 1/3 

 f~ = a0 x~  – x~  - 1/3 q’(0)

 Erosion point is :                           x = (q’(0)/a0) ¾ t ¾ 

for small times.



Final behaviour (vanishing) of ice lumps

Hump is then small   linear effects  
 y ~ x 1/3 over entire hump but history matters 
 θy (y = 0) = g(x) ~ 1 and g(x) stays the same for all late t.
 ft = - g(x)  for some late time t > t1.

Hence if f(x, t) has shape f1(x) at time t=t1 say then
f(x, t) = f1(x) – (t – t1) g(x) :-

 For parabola, vanishing point x = 4/7.

g(x)

f1(x)



Final behaviour (spreading erosion) of ice steps

Find

f ~ 1 – A t x – 1/3 

where 

A = 3 (λ / 9σ)1/3 /  Γ(1/3)



Spreading downstream is given by x ~ t 3



Strongly nonlinear solution for large heights.

This tells us what happens for much thicker ice. 

Suppose φ is of order unity. 

If f = hF with h >> 1, a two-zoned flow structure emerges. 

OUTER ZONE: y** = hY+ and

u = h (λY+ + λF), ψ = h2 (½ λ Y+ 2 + λFY+ ), p = - ½ h2 λ2 F2 .

---- an exact solution of the governing equations which satisfies the 

outermost boundary conditions but leaves a nonzero slip velocity u ~ hλF 

at Y+ = 0+. The corresponding thermal solution is 

θ = h φ (Y+ 2 + 2 F Y+ ) ½ .

The algebraic decay into the far-field response φhY+ at large Y+ is notable. 

This outer zone has inviscid motion.



INNER ZONE : thin layer on the ice, with y** = h – ½ Y and 

(u, v**, θ) = (hU, h ½ V, h ¼ Θ) + … .

The time scaling is t’ = h ¼ T, implying that the evolution is relatively slow. 

Substitution into the governing equations yields

Ux + VY = 0 ,  

UUx + VUY  = λ2 F Fx + UYY ,  

UΘx + VΘY = σ – 1 ΘYY .  

The boundary conditions :

U → λF(x, T), Θ ~ φ (2 F Y) ½, as Y → ꝏ ,  

U = V = 0, Θ = 0, FT =  – ΘY, at Y = 0.  

• This is a classical boundary-layer problem with the pressure effect 

prescribed at each time level T, supplemented by the temporal evolution of 

the scaled ice shape F. 

• The ice temperature – 1 is negligible to the present order. 

• The square-root trend with Y is unusual.



The above formulation holds on the iced part of the surface, not 
upstream since the scaled temperature θ is in effect zero there. 

Expect positive background heat transfer φ > 0 to produce positive heat 
transfer on the ice at Y = 0, thus inducing ice erosion, whereas negative φ 
might provoke negative heat transfer on the ice, inducing ice growth, but 
in any case the nonlinearity of the system and the x-dependence need to 
be taken fully into account. Numerical solutions are being considered.

If φ is small or zero:-

The critical scale here is φ = h-1/4φ^ because it reinstates the influence of 

the ice temperature at leading order in the inner zone. It gives

U → λF(x, T), θ ~ φ^ (2 F Y) ½, as Y → ꝏ , 

U = V = 0, θ = – 1, FT =  – θY, at Y = 0.

The presence of ‘– 1’ is noted.



Conclusions

Pre-impact models have been developed for ice particles passing through 
an air boundary layer or through air and water.

Post-impact ice accretion due to a droplet spreading on a wall has been 
described.

Wall-ice melting or accretion in near-wall flow is being studied, beginning 
with a simple model.

Further work is ongoing. Hot-wall effects; rebounds; viscosity; 3D.


