20 research outputs found

    Bestimmung thermischer Materialkennwerte von Erdkabelbettungen

    Get PDF
    Die Funktion der elektrischen Energienetze ist weltweit wichtig für die Bevölkerung und Wirtschaft der Länder. Beim Bau und beim Netzbetrieb stellen die Versorgungssicherheit sowie ökologische und ökonomische Sachverhalte die wichtigsten Aspekte dar. In Schwel-lenländern erfolgt z. B. zurzeit ein Aus- und Umbau zur Vermeidung von Netzüberlastun-gen aufgrund der wachsenden Industrie und Veränderungen in der Bevölkerungsstruktur. In Industrienationen und insbesondere in Deutschland als Vorreiter der Energiewende ist der Bau von Hoch- und Höchstspannungstrassen zum Transport der Energie aus großen Windparks notwendig. Zusätzlich müssen für die Nutzung erneuerbarer Energiequellen in Kleinkraftwerken und der damit einhergehenden Dezentralisierung der elektrischen Ener-gieproduktion umfangreiche Umbauten in den heute überwiegend mit erdverlegten Kabeln realisierten Verteilnetzen durchgeführt werden. Zurzeit erfolgen in Deutschland zeitweise Abschaltungen von Anlagen zur Nutzung erneu-erbarer Energien aufgrund fehlender Netzkapazitäten (ECOFYS, 2012). Diese Abschaltun-gen sind u. a. auch deshalb notwendig, weil es bei im Boden verlegten Stromkabeln zu elektrischen Verlusten kommt, die in Form von Wärme abgegeben werden. Die maximale Strombelastung wird durch die maximal zulässigen Leitertemperaturen beschränkt, die von den Kabelherstellern mit 70 bis 90 °C angegeben werden. Die Strombelastbarkeiten von Erdkabeln werden durch die Normen IEC 60287 und die DIN VDE 0276-1000 vorgegeben. Beim Nachweis von mittleren und geringen Wärmewider-ständen der Kabelumgebung bieten sie die Möglichkeit, erhöhte Werte als Bemessungs-strom für die Kabel anzusetzen. Die Wärmetransportmechanismen in Böden sind neben dem Einfluss der mineralischen und organischen Bestandteile sowie der Temperatur eng mit dem Wassergehalt verknüpft. Der Wassergehalt wiederum hängt maßgeblich von der Saugspannung im Boden ab. Die Verknüpfung zwischen dieser und dem Wassergehalt von Lockergesteinen bildet die sogenannte Wasserspannungskurve. Bisher werden die Möglichkeiten zur Bewertung der Kabelbelastbarkeit anhand von Bo-denkennwerten in der Praxis nahezu nicht genutzt, weil keine standardisierten Messme-thoden und Auswerteverfahren für die Wärmeleitfähigkeiten von Erdkabelbettungen existie-ren. In der vorliegenden Arbeit wurden deswegen Methoden für die Ermittlung der boden-physikalischen Kennwerte für die thermische Belastbarkeit von erdverlegten Kabelsyste-men entwickelt und validiert, und es wird deren Anwendung dargestellt. Die theoretischen Ansätze dieser Arbeit wurden durch umfangreiche Labor- und Felduntersuchungen beglei-tet und validiert. Die Grundlagen des Wärmetransports um Erdkabel herum wurden aus den Fachbereichen Elektrotechnik und Geowissenschaften zusammengetragen. Dazu wurden die Kennwerte für die Untersuchung unterschiedlicher Erdkabelbettungen (offshore, onshore, Sonderbau-formen) ermittelt und Entnahme-, Lagerungs- und Transportkonzepte erstmals abgeleitet. Aus der Geothermie bekannte Messverfahren wurden auf die kombinierte Messung von thermischen und hydraulischen Kennwerten von ungesättigten und gesättigten Kabelbet-tungen übertragen und weiterentwickelt. Ein klassischer Verdunstungsversuch wurde mit einer Wärmeleitfähigkeitsmessung mittels Nadelsonden kombiniert. Mit dieser methodischen Weiterentwicklung kann die Wärmeleit-fähigkeit einer Bodenprobe direkt über einen weiten Wassergehalts- und Saugspannungs-bereich bestimmt werden, während das Wasser aus der Probe verdunstet. Zudem wurde ein neues Verfahren für die Überführung der einzelnen Messwerte in eine stetige Funktion abgeleitet. Das Versorgungsgebiet des Projektpartners, der E.ON AG, umfasst erhebliche Anteile Bayerns. Deshalb wurden insbesondere bayerische Böden, sowie zu Vergleichszwecken Seeböden der Nord- und Ostsee untersucht. Da erdverlegte Kabel häufig auch in künstli-che Bettungsbaustoffe eingebaut werden, wurden Rohstoffe für Bettungsbaustoffe ebenso untersucht. Die Mess- und Auswerteverfahren wurden auch hier angewendet und validiert. Mittels statistischer Betrachtungen der Messergebnisse konnte das Potenzial der geother-mischen Voruntersuchung von Verlegetrassen für die Berechnung der Kabelbelastbarkeit aufgezeigt werden. Bei den bayerischen Böden ergaben sich für 14 % der untersuchten Proben Wärmeleitfähigkeiten, die unter 1 Wm-1K-1 liegen. Für diese Böden ist der oft bei Bemessungen der Übertragungsleistung nach DIN 0276-1000 angesetzte Bemessungs-wert von 1 Wm-1K-1 zu groß gewählt. Mit üblichen Bodenverdichtungsarbeiten im Bereich der Kabelgräben werden dagegen Wärmeleitfähigkeiten von mehr als 1,5 Wm-1K-1 leicht erreicht. Dieses konnte für mindestens 50 % der Böden gezeigt werden. Damit kann für Kabel in diesen Böden eine erhöhte Belastbarkeit nach DIN 0276-1000 für die Verteilung elektrischer Energie angesetzt werden. Es wird gezeigt, dass eine Identifizierung von Böden mit niedrigen Wärmeleitfähigkeiten ebenso wie die Identifizierung von Böden mit hohen Wärmeleitfähigkeiten während des Trassenbaus möglich ist. Damit können Böden mit niedrigen Wärmeleitfähigkeiten gezielt ausgetauscht werden. Die Messergebnisse der vorliegenden Arbeit wurden in einer hierfür erstellten GIS-Karte erfasst. Sie bildet mit den Messwerten der folgenden Projektabschnitte die Basis für die Entwicklung einer räumlichen Bewertungsmethode zur Planung von Ka-beltrassen, welche den Einfluss des Energie- und Wasserhaushalts der Standorte berück-sichtigt. Zur Validierung wurden die Labormesswerte in einem hierfür errichteten Kabeltestfeld mit Feldmesswerten verglichen. Hierfür wurden Temperaturzeitreihen an Mittel- und Nieder-spannungskabeln mittels Software, die in der Geothermie für die Berechnung der Wärme-leitfähigkeit des Bodens um Erdwärmesonden eingesetzt wird, ausgewertet. Es zeigen sich gute Übereinstimmungen zwischen den Feld- und Labormesswerten. Bei den Feldmess-werten ist aufgrund der Kabeltemperaturen ein zusätzlicher konvektiver Wärmetransport im Porenraum über die Dampfphase erkennbar. Das dargestellte Auswertungsverfahren stellt eine Möglichkeit dar, bei neugebauten Trassen durch Anbringung von Temperatursensoren bzw. Lichtwellenleitern über eine Aufheizung des Kabels die Kennwerte des umgebenden Bodens zu ermitteln und zusätzlich Trassenbereiche mit besonders hoher Wärmeentwick-lung zu identifizieren und möglicherweise zu sanieren. Auf Basis der im Rahmen dieser Dissertation durchgeführten Untersuchungen wurde ab-schließend ein neues Messgerät entwickelt, dass die bisherigen Messverfahren ergänzt. Hierin erfolgt die Messung unter Variation der Verdichtung und der Temperaturgradienten in der Probe, wodurch der Dampftransport in der Probe miterfasst wird

    Multiphysikalischer Entwurf hybrid-integrierter MEMS-Oszillatoren auf Silizium-LTCC-Substraten

    Get PDF
    Die vorliegende Dissertation befasst sich mit dem Entwurf und der Analyse von MEMS-Oszillatoren auf dem so genannten SiCer-Verbundsubstrat. Dafür wird eine Methodik erarbeitet, die den Entwurf von Mikroelektronik und Mikroelektromechanik vereint. Diese Methodik basiert auf einem analytischen Entwurfsmodell zur Synthese von Resonatorstrukturen über die elektrischen Spezifikation. In der Arbeit wird weiterhin der Entwurf zweier aufeinander aufbauender Oszillatortypen beschrieben, einem Festfrequenzoszillator für Frequenzen bis zu 600 MHz sowie einem Mehrfrequenzoszillator für Ausgangsfrequenzen im oberen MHz- bis unteren GHz-Bereich und der Bereitstellung von Referenzfrequenzen von etwa 10 MHz. Beide Typen von Oszillatoren werden in verschiedenen Varianten implementiert und auf eine möglichst kompakte Baugröße und geringes Phasenrauschen hin optimiert. Die Resultate aller Präparationen heben sich vom Stand der Technik ab, sowohl in der Aufbautechnik als auch in der Oszillationsfrequenz und im Phasenrauschen. Weiterhin wird in der vorliegenden Arbeit die Thematik der Temperaturabhängigkeit von MEMS-Resonatoren und -Oszillatoren betrachtet, welche im Vergleich zur thermischen Drift kommerziell verfügbarer Quarz-Resonatoren und -Oszillatoren höher ausfällt. Dazu wird das analytische Entwurfsmodell für MEMS-Resonatoren derart modifiziert, dass sich die geometrischen Abmessungen und Materialparameter in Abhängigkeit der Umgebungstemperatur verändern. Messungen an Resonatoren verschiedener Geometrien werden im Anschluss genutzt, um die analytischen Berechnungen zu verifizieren. Die messtechnisch ermittelte Temperaturabhängigkeit der Resonanzfrequenz liegt dabei zwischen -26 ppm/K und -20 ppm/K, was dem analytisch modellierten Temperaturkoeffizienten von -28,1 ppm/K sehr nahe kommt. Auf Basis von in der Literatur veröffentlichten Temperaturkompensationsmethoden wird das analytische Modell um eine Lage Siliziumdioxid erweitert, die einen positiven Temperaturkoeffizienten aufweist und so die Temperaturabhängigkeit kompensiert.This dissertation deals with the design and analysis of MEMS oscillators on the SiCer substrate. To reach this goal, a method for combination of microelectronic and microelectromechanic designs is elaborated. By utilising this method, which is based on an analytical design model to synthesize resonator geometries from a given specification, the design of two consecutive types of oscillators is described, namely a single-frequency oscillator for oscillation frequencies up to 600 MHz and a multi-frequency oscillator for output frequencies in the upper MHz and the lower GHz range and reference frequencies of around 10 MHz. Both oscillator types are implemented in different variants and optimised towards compact design and low phase noise. The results of all preparations stand out from the state-of-the-art, both in assembly and utilised packaging technology, and in oscillation frequency and phase noise. Furthermore, this thesis covers temperature dependence of MEMS resonators and oscillators, which is observed to be high compared to the thermal drift of commercially available quartz resonators and oscillators. The analytical design model for MEMS resonators was therefore modified towards temperature-dependent geometrical dimensions and material parameters. Measurements at different resonator geometries are then performed to verify the analytical calculations. The experimentally-determined temperature coefficient of the resonant frequency is found to be between -26 ppm/K and -20 ppm/K, which reaches nearly the temperature coefficient of the analytical model with -28.1 ppm/K. Based on methods for temperature compensation published in literature, the analytical model is extended by a silicon-dioxide layer with a positive temperature coefficient to compensate for the present temperature dependence

    COUPLED MEASUREMENTS OF THERMOPYSICAL AND HYDRAULICAL PROPERTIES OF UNSATURATED AND UNCONSOLIDATED ROCKS

    Get PDF
    ABSTRACT Thermal conductivity and diffusivity as well as the hydraulic properties of unconsolidated rocks are the most important parameters required to quantify subsurface conductive and convective heat transfer. Soil mechanical and mineralogical constraints such as thermal conductivity of the individual grain fractions, the bulk dry density and the pressures remain constant. On the other hand, temperature and water content in the unsaturated zone are highly variable in time and space. The variations of the ratio between the gas phase and the water phase occupying the pore space has a varying thermal insulating effect due to the low thermal conductivity of air. In addition, the unsaturated hydraulic conductivity is a function of the water content of unconsolidated rocks. The air in the pore space reduces the effective conductive cross-sectional area, which leads to a decrease in hydraulic conductivity. Increasing drainage induces negative pore pressure (suction) and due to the hysteresis in drainage and irrigation thus the local water distribution is changed. Presented herein is the implementation of a newly developed thermal conductivity and thermal diffusivity meter for the integrated investigation of soil mechanics, hydraulic and geothermal properties of unconsolidated rocks. Patent applications are pending. Furthermore an evaporation test was developed and columnar drainage experiments with continuously conducted measurement of water content, pore pressure, and thermal conductivity at different levels of the column. To simultaneously measure the hydraulic properties as well as the unsaturated thermal conductivity they are equipped with a full-space line (heat) source. In these experiments many different unconsolidated rocks are examined in order to provide the respective parameters for a new capillary tension/ thermal conductivity function analogue to the existing capillary tension/ water content functions

    New Methods for Determining the Thermophysical and Hydraulical Properties of Unsaturated and Unconsolidated Rocks

    Get PDF
    ABSTRACT The heat conductivity and diffusivity as well as the hydraulic properties of unconsolidated rocks are important parameters to quantify the conductive and convective heat transfer in the subsurface. Depending on the type and way of installation of an underground heat exchanger system the involved soil undergoes compaction, change in saturation e.g.. The most soil properties will be changed somehow, just the grain size distribution remains constant. In the operation phase the temperature and saturation are variable in time and space. The change in the ratios of the gas phase and water phase in the subsoil affects the themo-physical performance. The hydraulic conductivity of soils is a non-linear function on the water content. The heat capacity of unconsolidated rocks can be calculated from the heat capacities of the individual components and their volume fractions. In contrast, there is no linear dependence of the thermal conductivity and the water content. Established computational models provide approximations for the thermal conductivity as a function of water content and other constraints such as temperature. However, for the additional determination of convective transport behavior, the unsaturated hydraulic conductivity and water retention function, largely dependent on the tortuosity of the pore space, have to be determined simultaneously. Here, for the integrated study of soil mechanics, hydraulic and geothermal properties of unconsolidated rocks, a heat and temperature conductivity meter has been developed and patented. The device allows measurements of samples either under constant pressure of up to 7.6 Mpa which means soil compaction can be varied stepwise or it can be driven at a constant sample volume. The treatment temperatures of the soil samples can be varied from -10 to +80 ° C. Additionally to the parameters such as temperature, pressure, volume and water content, the capillary tension is recorded during the measurement. For the simultaneous study of water transport characteristics and the unsaturated conductivity of undisturbed unconsolidated rock samples, an evaporation test has been developed. It is equipped with a full-space line source to determine the thermal conductivity. This allows the simultaneous measurement of thermal conductivity, water retention characteristics and hydraulic conductivity of a soil sample up to the air entry point of the ceramic tensiometer cap (approx. -780 hPa). The functionality of the equipment and methods has been validated and the devices were used for soil investigation in numerous projects. Determination of the design parameters of shallow geothermal systems and of the heat transfer of burried cables is thepurpose of the methods presented in this study. The data compile mathematical models for the thermo-physical parameters of soils. A mathematical function for calculating the thermal conductivity in dependence of the capillary tension is introduced here and the test results of geotechnical and geothermal soil parameters of sand, clay and silt are presented

    Experimental validation of computerised models of clustering of platelet glycoprotein receptors that signal via tandem SH2 domain proteins

    Get PDF
    The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects

    An interaction map of circulating metabolites, immune gene networks, and their genetic regulation

    Get PDF
    Background: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. Results: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. Conclusions: This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.Peer reviewe

    Weiterentwicklung von Sekundärkonzentratoren durch alternative Reflektoren und optimierte Geometrien in Solarturmkraftwerken

    Get PDF
    Ziel dieser Arbeit ist es, glasfreie Reflektormaterialien zu akquirieren und für die Verwendung als Sekundärkonzentrator in Solarturmkraftwerken zu bewerten. Darüber hinaus ist eine Effizienzoptimierung des klassischen Sekundärkonzentratordesigns durch dessen vertikale Dehnung untersucht worden

    Bestimmung thermischer Materialkennwerte von Erdkabelbettungen

    Get PDF
    Die Funktion der elektrischen Energienetze ist weltweit wichtig für die Bevölkerung und Wirtschaft der Länder. Beim Bau und beim Netzbetrieb stellen die Versorgungssicherheit sowie ökologische und ökonomische Sachverhalte die wichtigsten Aspekte dar. In Schwel-lenländern erfolgt z. B. zurzeit ein Aus- und Umbau zur Vermeidung von Netzüberlastun-gen aufgrund der wachsenden Industrie und Veränderungen in der Bevölkerungsstruktur. In Industrienationen und insbesondere in Deutschland als Vorreiter der Energiewende ist der Bau von Hoch- und Höchstspannungstrassen zum Transport der Energie aus großen Windparks notwendig. Zusätzlich müssen für die Nutzung erneuerbarer Energiequellen in Kleinkraftwerken und der damit einhergehenden Dezentralisierung der elektrischen Ener-gieproduktion umfangreiche Umbauten in den heute überwiegend mit erdverlegten Kabeln realisierten Verteilnetzen durchgeführt werden. Zurzeit erfolgen in Deutschland zeitweise Abschaltungen von Anlagen zur Nutzung erneu-erbarer Energien aufgrund fehlender Netzkapazitäten (ECOFYS, 2012). Diese Abschaltun-gen sind u. a. auch deshalb notwendig, weil es bei im Boden verlegten Stromkabeln zu elektrischen Verlusten kommt, die in Form von Wärme abgegeben werden. Die maximale Strombelastung wird durch die maximal zulässigen Leitertemperaturen beschränkt, die von den Kabelherstellern mit 70 bis 90 °C angegeben werden. Die Strombelastbarkeiten von Erdkabeln werden durch die Normen IEC 60287 und die DIN VDE 0276-1000 vorgegeben. Beim Nachweis von mittleren und geringen Wärmewider-ständen der Kabelumgebung bieten sie die Möglichkeit, erhöhte Werte als Bemessungs-strom für die Kabel anzusetzen. Die Wärmetransportmechanismen in Böden sind neben dem Einfluss der mineralischen und organischen Bestandteile sowie der Temperatur eng mit dem Wassergehalt verknüpft. Der Wassergehalt wiederum hängt maßgeblich von der Saugspannung im Boden ab. Die Verknüpfung zwischen dieser und dem Wassergehalt von Lockergesteinen bildet die sogenannte Wasserspannungskurve. Bisher werden die Möglichkeiten zur Bewertung der Kabelbelastbarkeit anhand von Bo-denkennwerten in der Praxis nahezu nicht genutzt, weil keine standardisierten Messme-thoden und Auswerteverfahren für die Wärmeleitfähigkeiten von Erdkabelbettungen existie-ren. In der vorliegenden Arbeit wurden deswegen Methoden für die Ermittlung der boden-physikalischen Kennwerte für die thermische Belastbarkeit von erdverlegten Kabelsyste-men entwickelt und validiert, und es wird deren Anwendung dargestellt. Die theoretischen Ansätze dieser Arbeit wurden durch umfangreiche Labor- und Felduntersuchungen beglei-tet und validiert. Die Grundlagen des Wärmetransports um Erdkabel herum wurden aus den Fachbereichen Elektrotechnik und Geowissenschaften zusammengetragen. Dazu wurden die Kennwerte für die Untersuchung unterschiedlicher Erdkabelbettungen (offshore, onshore, Sonderbau-formen) ermittelt und Entnahme-, Lagerungs- und Transportkonzepte erstmals abgeleitet. Aus der Geothermie bekannte Messverfahren wurden auf die kombinierte Messung von thermischen und hydraulischen Kennwerten von ungesättigten und gesättigten Kabelbet-tungen übertragen und weiterentwickelt. Ein klassischer Verdunstungsversuch wurde mit einer Wärmeleitfähigkeitsmessung mittels Nadelsonden kombiniert. Mit dieser methodischen Weiterentwicklung kann die Wärmeleit-fähigkeit einer Bodenprobe direkt über einen weiten Wassergehalts- und Saugspannungs-bereich bestimmt werden, während das Wasser aus der Probe verdunstet. Zudem wurde ein neues Verfahren für die Überführung der einzelnen Messwerte in eine stetige Funktion abgeleitet. Das Versorgungsgebiet des Projektpartners, der E.ON AG, umfasst erhebliche Anteile Bayerns. Deshalb wurden insbesondere bayerische Böden, sowie zu Vergleichszwecken Seeböden der Nord- und Ostsee untersucht. Da erdverlegte Kabel häufig auch in künstli-che Bettungsbaustoffe eingebaut werden, wurden Rohstoffe für Bettungsbaustoffe ebenso untersucht. Die Mess- und Auswerteverfahren wurden auch hier angewendet und validiert. Mittels statistischer Betrachtungen der Messergebnisse konnte das Potenzial der geother-mischen Voruntersuchung von Verlegetrassen für die Berechnung der Kabelbelastbarkeit aufgezeigt werden. Bei den bayerischen Böden ergaben sich für 14 % der untersuchten Proben Wärmeleitfähigkeiten, die unter 1 Wm-1K-1 liegen. Für diese Böden ist der oft bei Bemessungen der Übertragungsleistung nach DIN 0276-1000 angesetzte Bemessungs-wert von 1 Wm-1K-1 zu groß gewählt. Mit üblichen Bodenverdichtungsarbeiten im Bereich der Kabelgräben werden dagegen Wärmeleitfähigkeiten von mehr als 1,5 Wm-1K-1 leicht erreicht. Dieses konnte für mindestens 50 % der Böden gezeigt werden. Damit kann für Kabel in diesen Böden eine erhöhte Belastbarkeit nach DIN 0276-1000 für die Verteilung elektrischer Energie angesetzt werden. Es wird gezeigt, dass eine Identifizierung von Böden mit niedrigen Wärmeleitfähigkeiten ebenso wie die Identifizierung von Böden mit hohen Wärmeleitfähigkeiten während des Trassenbaus möglich ist. Damit können Böden mit niedrigen Wärmeleitfähigkeiten gezielt ausgetauscht werden. Die Messergebnisse der vorliegenden Arbeit wurden in einer hierfür erstellten GIS-Karte erfasst. Sie bildet mit den Messwerten der folgenden Projektabschnitte die Basis für die Entwicklung einer räumlichen Bewertungsmethode zur Planung von Ka-beltrassen, welche den Einfluss des Energie- und Wasserhaushalts der Standorte berück-sichtigt. Zur Validierung wurden die Labormesswerte in einem hierfür errichteten Kabeltestfeld mit Feldmesswerten verglichen. Hierfür wurden Temperaturzeitreihen an Mittel- und Nieder-spannungskabeln mittels Software, die in der Geothermie für die Berechnung der Wärme-leitfähigkeit des Bodens um Erdwärmesonden eingesetzt wird, ausgewertet. Es zeigen sich gute Übereinstimmungen zwischen den Feld- und Labormesswerten. Bei den Feldmess-werten ist aufgrund der Kabeltemperaturen ein zusätzlicher konvektiver Wärmetransport im Porenraum über die Dampfphase erkennbar. Das dargestellte Auswertungsverfahren stellt eine Möglichkeit dar, bei neugebauten Trassen durch Anbringung von Temperatursensoren bzw. Lichtwellenleitern über eine Aufheizung des Kabels die Kennwerte des umgebenden Bodens zu ermitteln und zusätzlich Trassenbereiche mit besonders hoher Wärmeentwick-lung zu identifizieren und möglicherweise zu sanieren. Auf Basis der im Rahmen dieser Dissertation durchgeführten Untersuchungen wurde ab-schließend ein neues Messgerät entwickelt, dass die bisherigen Messverfahren ergänzt. Hierin erfolgt die Messung unter Variation der Verdichtung und der Temperaturgradienten in der Probe, wodurch der Dampftransport in der Probe miterfasst wird
    corecore