66 research outputs found

    Putative roles of cilia in polycystic kidney disease

    Get PDF
    AbstractThe last 10years has witnessed an explosion in research into roles of cilia in cystic renal disease. Cilia are membrane-enclosed finger-like projections from the cell, usually on the apical surface or facing into a lumen, duct or airway. Ten years ago, the major recognised functions related to classical “9+2” cilia in the respiratory and reproductive tracts, where co-ordinated beating clears secretions and assists fertilisation respectively. Primary cilia, which have a “9+0” arrangement lacking the central microtubules, were anatomical curiosities but several lines of evidence have implicated them in both true polycystic kidney disease and other cystic renal conditions: ranging from the homology between Caenorhabditis elegans proteins expressed on sensory cilia to mammalian polycystic kidney disease (PKD) 1 and 2 proteins, through the discovery that orpk cystic mice have structurally abnormal cilia to numerous recent studies wherein expression of nearly all cyst-associated proteins has been reported in the cilia or its basal body. Functional studies implicate primary cilia in mechanosensation, photoreception and chemosensation but it is the first of these which appears most important in polycystic kidney disease: in the simplest model, fluid flow across the apical surface of renal cells bends the cilia and induces calcium influx, and this is perturbed in polycystic kidney disease. Downstream effects include changes in cell differentiation and polarity. Pathways such as hedgehog and Wnt signalling may also be regulated by cilia. These data support important roles for cilia in the pathogenesis of cystic kidney diseases but one must not forget that the classic polycystic kidney disease proteins are expressed in several other locations where they may have equally important roles, such as in cell-cell and cell-matrix interactions, whilst it is not just aberrant cilia signalling that can lead to de-differentiation, loss of polarity and other characteristic features of polycystic kidney disease. Understanding how cilia fit into the other aspects of polycystic kidney disease biology is the challenge for the next decade. This article is part of a Special Issue entitled: Polycystic Kidney Disease

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed

    Locating a Tree in a Phylogenetic Network in Quadratic Time

    Get PDF
    International audienceA fundamental problem in the study of phylogenetic networks is to determine whether or not a given phylogenetic network contains a given phylogenetic tree. We develop a quadratic-time algorithm for this problem for binary nearly-stable phylogenetic networks. We also show that the number of reticulations in a reticulation visible or nearly stable phylogenetic network is bounded from above by a function linear in the number of taxa

    Expression of p16 and HPV E4 on biopsy samples and methylation of FAM19A4 and miR124-2 on cervical cytology samples in the classification of cervical squamous intraepithelial lesions

    Get PDF
    The decision to treat a cervical squamous intraepithelial lesion (SIL) by loop electrosurgical excision procedure (LEEP) relies heavily on a colposcopy-directed biopsy showing high-grade (H)SIL. Diagnosis is often supported by p16, an immunohistochemical (IHC) biomarker of high-risk (hr)HPV E7 gene activity. Additional potential markers include methylation of tumor suppressor genes FAM19A4/miR124-2 in cervical cytology for advanced transforming HSIL and the IHC marker HPV E4 for productive, potentially regressing lesions. In 318 women referred for colposcopy, we investigated the relationship between staining patterns of p16 and E4 IHC in the worst biopsy, and the relation of these to FAM19A4/miR124-2 methylation status in cytology. E4-positive staining decreased with increasing SIL/CIN grade from 41% in LSIL to 3% in HSIL/CIN3. E4 positivity increased with grade of p16 when p16 expression was limited to the lower two third of the epithelium (r = 0.378), but fell with expression over. Loss of E4 expression in the worst lesion was associated with the methylation of FAM19A4/miR124-2. We also examined whether these biomarkers can predict the histological outcome of the LE

    Mutational analyses of UPIIIA, SHH, EFNB2, and HNF1β in persistent cloaca and associated kidney malformations

    Get PDF
    OBJECTIVES: ‘Persistent cloaca’ is a severe malformation affecting females in which the urinary, genital and alimentary tracts share a single conduit. Previously, a Uroplakin IIIA (UPIIIA) mutation was reported in one individual with persistent cloaca, and UPIIIA, Sonic Hedgehog (SHH), Ephrin B2 (EFNB2) and Hepatocyte Nuclear Factor 1β (HNF1β) are expressed during the normal development of organs that are affected in this condition. HNF1β mutations have been associated with uterine malformations in humans, and mutations of genes homologous to human SHH or EFNB2 cause persistent cloaca in mice. PATIENTS AND METHODS: We sought mutations of coding regions of UPIIIA, SHH, EFNB2 and HNF1β genes by direct sequencing in a group of 20 patients with persistent cloaca. Most had associated malformations of the upper renal tract and over half had impaired renal excretory function. The majority of patients had congenital anomalies outside the renal/genital tracts and two had the VACTERL association. RESULTS: Apart from a previously described index case, we failed to find UPIIIA mutations, and no patient had a SHH, EFNB2 or HNF1β mutation. CONCLUSION: Persistent cloaca is only rarely associated with UPIIIA mutation. Despite the fact that SHH and EFNB2 are appealing candidate genes, based on their expression patterns and mutant mice phenotypes, they were not mutated in these humans with persistent cloaca. Although HNF1β mutations can perturb paramesonephric duct fusion in humans, HNF1β was not mutated in persistent cloaca

    De-Suppression of Mesenchymal Cell Identities and Variable Phenotypic Outcomes Associated with Knockout of Bbs1

    Get PDF
    Bardet–Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate

    Reliable identification of women with CIN3+ using hrHPV genotyping and methylation markers in a cytology-screened referral population

    Get PDF
    Cervical screening aims to identify women with high-grade squamous intraepithelial lesion/cervical intraepithelial neoplasia 2-3 (HSIL/CIN2-3) or invasive cervical cancer (ICC). Identification of women with severe premalignant lesions or ICC (CIN3+) could ensure their rapid treatment and prevent overtreatment. We investigated high-risk human papillomavirus (hrHPV) detection with genotyping and methylation of FAM19A4/miR124-2 for detection of CIN3+ in 538 women attending colposcopy for abnormal cytology. All women had an additional cytology with hrHPV testing (GP5+/6+-PCR-EIA+), genotyping (HPV16/18, HPV16/18/31/45), and methylation analysis (FAM19A4/miR124-2) and at least one biopsy. CIN3+ detection was studied overall and in women <30 (n = 171) and ≥30 years (n = 367). Positivity for both rather than just one methylation markers increased in CIN3, and all ICC was positive for both. Overall sensitivity and specificity for CIN3+ were, respectively, 90.3% (95%CI 81.3–95.2) and 31.8% (95%CI 27.7–36.1) for hrHPV, 77.8% (95%CI 66.9–85.8) and 69.3% (95%CI 65.0–73.3) for methylation biomarkers and 93.1% (95%CI 84.8–97.0) and 49.4% (95%CI 44.8–53.9) for combined HPV16/18 and/or methylation positivity. For CIN3, hrHPV was found in 90.9% (95%CI 81.6–95.8), methylation positivity in 75.8% (95%CI 64.2–84.5) and HPV16/18 and/or methylation positivity in 92.4% (95%CI 83.5–96.7). In women aged ≥30, the sensitivity of combined HPV16/18 and methylation was increased (98.2%, 95%CI 90.6–99.7) with a specificity of 46.3% (95%CI 40.8–51.9). Combination of HPV16/18 and methylation analysis was very sensitive and offered improved specificity for CIN3+, opening the possibility of rapid treatment for these women and follow-up for women with potentially regressive, less advanced, HSIL/CIN2 lesions
    • …
    corecore