36 research outputs found

    Large Eddy Simulation of Cylindrical Jet Breakup and Correlation of Simulation Results With Experimental Data

    Get PDF
    Modern engines with increasing power densities have put additional demands on pistons to perform in incrementally challenging thermal environments. Piston cooling is therefore of paramount importance for engine component manufacturers. The objective of this computational fluid dynamics (CFD) study is to identify the effect of a given piston cooling nozzle (PCN) geometry on the cooling oil jet spreading phenomenon. The scope of this study is to develop a numerical setup using the open-source CFD toolkit OpenFoam V R for measuring the magnitude of oil jet spreading and comparing it to experimental results. Large eddy simulation (LES) turbulence modeling is used to capture the flow physics that affects the inherently unsteady jet breakup phenomenon. The oil jet spreading width is the primary metric used for comparing the numerical and experimental results. The results of simulation are validated for the correct applicability of LES by evaluating the fraction of resolved turbulent kinetic energy (TKE) at various probe locations and also by performing turbulent kinetic energy spectral analysis. CFD results appear promising since they correspond to the experimental data within a tolerance (of 610%) deemed satisfactory for the purpose of this study. Further generalization of the setup is underway toward developing a tool that predicts the aforementioned metric-thereby evaluating the effect of PCN geometry on oil jet spreading and hence on the oil catching efficiency (CE) of the piston cooling gallery. This tool would act as an intermediate step in boundary condition formulation for the simulation determining the filling ratio (FR) and subsequently the heat transfer coefficients (HTCs) in the piston cooling gallery

    High Efficiency Radiator Design for Advanced Coolant

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Fall 2007The development of advanced nanofluids, which have better conduction and convection thermal properties, has presented a new opportunity to design a high energy efficient, light-weight automobile radiator. Current radiator designs are limited by the air side resistance requiring a large frontal area to meet cooling needs. This project will explore concepts of next-generation radiators that can adopt the high performance nanofluids. The goal of this project is to design an advanced concept for a radiator for use in automobiles. New concepts will be considered and a demonstration test rig will be built to demonstrate the chosen design.Prof. Albert Shih, Mechanical Engineering, University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/57958/1/me450f07project30_report.pd

    Evidence that histidine protonation of receptor-bound anthrax protective antigen is a trigger for pore formation

    Get PDF
    The protective antigen (PA) component of the anthrax toxin forms pores within the low pH environment of host endosomes, through mechanisms that are poorly understood. It has been proposed that pore formation is dependent on histidine protonation. In previous work, we biosynthetically incorporated 2-fluorohistidine (2-FHis), an isosteric analog of histidine with a significantly reduced pKa (~1), into PA, and showed that the pH-dependent conversion from the soluble prepore to a pore was unchanged. However, we also observed that 2-FHisPA was non-functional in the ability to mediate cytotoxicity of CHO-K1 cells by LFN-DTA, and was defective in translocation through planar lipid bilayers. Here, we show that the defect in cytotoxicity is due to both a defect in translocation and, when bound to the host cellular receptor, an inability to undergo low pH-induced pore formation. Combining X-ray crystallography with hydrogen-deuterium (H-D) exchange mass spectrometry, our studies lead to a model in which hydrogen bonds to the histidine ring are strengthened by receptor binding. The combination of both fluorination and receptor binding is sufficient to block low pH-induced pore formation

    The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present)

    Get PDF
    The Global Precipitation Climatology Project (GPCP) Version-2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.58 latitude 3 2.58 longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain gauge obser-vations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The dataset is extended back into the prem-icrowave era (before mid-1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the rain gauge analysis. The dataset archive also contains the individual input fields, a combined satellite estimate, and error estimates for each field. This monthly analysis is the foundation for the GPCP suite of products, including those at finer temporal resolution. The 23-yr GPCP climatology is characterized, along with time and space variations of precipitation. 1

    Extratropical Impacts on Atlantic Tropical Cyclone Activity

    Full text link
    With warm sea surface temperature (SST) anomalies in the tropical Atlantic and cold SST anomalies in the east Pacific, the unusually quiet hurricane season in 2013 was a surprise to the hurricane community. The authors' analyses suggest that the substantially suppressed Atlantic tropical cyclone (TC) activity in August 2013 can be attributed to frequent breaking of midlatitude Rossby waves, which led to the equatorward intrusion of cold and dry extratropical air. The resultant mid- to upper-tropospheric dryness and strong vertical wind shear hindered TC development. Using the empirical orthogonal function analysis, the active Rossby wave breaking in August 2013 was found to be associated with a recurrent mode of the midlatitude jet stream over the North Atlantic, which represents the variability of the intensity and zonal extent of the jet. This mode is significantly correlated with Atlantic hurricane frequency. The correlation coefficient is comparable to the correlation of Atlantic hurricane frequency with the main development region (MDR) relative SST and higher than that with the Niño-3.4 index. This study highlights the extratropical impacts on Atlantic TC activity, which may have important implications for the seasonal predictability of Atlantic TCs

    Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG

    Get PDF
    Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded β-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism

    Maintenance quality assurance peer exchange 2

    No full text
    71 p.This report documents a comprehensive study of twenty three maintenance quality assurance (MQA) programs throughout the United States and Canada. The policies and standards of each program were synthesized to create a general assessment on the condition of MQA programs in 2008. These data were then compared to similar data compiled in 2005. The resulting study is a comparison between MQA programs in 2004 and 2008. The data can be used to aid in the process of modifying the policies of current MQA programs to improve existing measures or create new ones. Further discussion of MQA policies and implementation should be continued to align with the constantly developing needs of roadways across the nation

    Investigating Manuka Honey Antibacterial Properties When Incorporated into Cryogel, Hydrogel, and Electrospun Tissue Engineering Scaffolds

    No full text
    Honey is well-known for its wound healing capability and Manuka honey (MH) contains a unique Manuka factor, providing an additional antibacterial agent. Previously, there has not been a practical way to apply MH to a wound site, which renders treatment for an extended period extremely difficult. Tissue-engineered scaffolds offer an alternative treatment method to standard dressings by providing varying geometries to best treat the specific tissue. MH was incorporated into cryogels, hydrogels, and electrospun scaffolds to assess the effect of scaffold geometry on bacterial clearance and adhesion, as well as cellular adhesion. Electrospun scaffolds exhibited a faster release due to the nanoporous fibrous geometry which led to a larger partial bacterial clearance as compared to the more three-dimensional cryogels (CG) and hydrogels (HG). Similarly, the fast release of MH from the electrospun scaffolds resulted in reduced bacterial adhesion. Overall, the fast MH release of the electrospun scaffolds versus the extended release of the HG and CG scaffolds provides differences in cellular/bacterial adhesion and advantages for both short and long-term applications, respectively. This manuscript provides a comparison of the scaffold pore structures as well as bacterial and cellular properties, providing information regarding the relationship between varying scaffold geometry and MH efficacy

    A Comparison of Tissue Engineering Scaffolds Incorporated with Manuka Honey of Varying UMF

    No full text
    Purpose. Manuka honey (MH) is an antibacterial agent specific to the islands of New Zealand containing both hydrogen peroxide and a Unique Manuka Factor (UMF). Although the antibacterial properties of MH have been studied, the effect of varying UMF of MH incorporated into tissue engineered scaffolds have not. Therefore, this study was designed to compare silk fibroin cryogels and electrospun scaffolds incorporated with a 5% MH concentration of various UMF. Methods. Characteristics such as porosity, bacterial clearance and adhesion, and cytotoxicity were compared. Results. Pore diameters for all cryogels were between 51 and 60 µm, while electrospun scaffolds were 10 µm. Cryogels of varying UMF displayed clearance of approximately 0.16 cm for E. coli and S. aureus. In comparison, the electrospun scaffolds clearance ranged between 0.5 and 1 cm. A glucose release of 0.5 mg/mL was observed for the first 24 hours by all scaffolds, regardless of UMF. With respect to cytotoxicity, neither scaffold caused the cell number to drop below 20,000. Conclusions. Overall, when comparing the effects of the various UMF within the two scaffolds, no significant differences were observed. This suggests that the fabricated scaffolds in this study displayed similar bacterial effects regardless of the UMF value
    corecore