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Curli are functional amyloid fibers that constitute the major protein 

component of the extracellular matrix in pellicle biofilms formed by 

Bacteroidetes and Proteobacteria (predominantly - and -)1-3. They provide a 

fitness advantage in pathogenic strains and induce a strong pro-inflammatory 

response during bacteremia1,4,5. Curli formation requires a dedicated protein 

secretion machinery comprised of the outer membrane lipoprotein CsgG and two 

soluble accessory proteins, CsgE and CsgF 6,7. Here we report the X-ray structure 

of E. coli CsgG in a non-lipidated, soluble form as well as in its native membrane-

extracted conformation. CsgG forms an oligomeric transport complex composed 

of nine anticodon binding domain (ABD)-like units that give rise to a 36-stranded 

-barrel that traverses the bilayer and is connected to a cage-like vestibule in the 

periplasm. The transmembrane and periplasmic domains are separated by a 0.9 

nm channel constriction composed of three stacked concentric phenylalanine-, 

asparagine- and tyrosine-rings that may guide the extended polypeptide substrate 

through the secretion pore. The specificity factor CsgE forms a nonameric 

adaptor that binds and closes off the periplasmic face of the secretion channel, 

creating a 24.000 Å3 pre-constriction chamber. Our structural, functional and 

electrophysiological analyses imply that CsgG is an ungated, non-selective protein 

secretion channel that likely employs a diffusion-based, entropy-driven transport 

mechanism.  

 

Curli are bacterial surface appendages that have structural and physical 

characteristics of amyloid fibrils, best known from human degenerative diseases7-9. 

However, the role of bacterial amyloids such as curli are to facilitate biofilm formation 

4,10. Unlike pathogenic amyloids, which are the product of protein misfolding, curli 



formation is coordinated by proteins encoded in two dedicated operons, csgBAC (curli 

specific genes BAC) and csgDEFG in Escherichia coli (Extended Data Fig. 1)6,7. Upon 

secretion, CsgB nucleates CsgA subunits into curli fibers 7,11,12. Secretion and 

extracellular deposition of CsgA and CsgB is dependent on two soluble accessory 

factors, CsgE and CsgF, respectively, as well as CsgG, a 262-residue lipoprotein 

located in the outer membrane (OM)13-16. Due to the lack of hydrolyzable energy 

sources or ion gradients at the outer membrane, CsgG falls into a specialized class of 

protein translocators that must operate through an alternatively energized transport 

mechanism. In the absence of a structural model, the dynamic workings of how CsgG 

promotes secretion and assembly of highly stable amyloid-like fibers in a regulated 

fashion across a biological membrane has thus far remained enigmatic.  

Prior to insertion into the OM, lipoproteins are piloted across the periplasm via 

the lipoprotein localization (Lol) pathway17. We observed that non-lipidated CsgG 

(CsgGC1S) could be isolated as a soluble periplasmic intermediate, analogous to the 

pre-pore forms observed in pore-forming proteins and toxins18. CsgGC1S was found 

predominantly as monomers, in addition to a minor fraction of discrete oligomeric 

complexes (Extended Data Fig. 2)19. The soluble CsgGC1S oligomers were crystallized 

and their structure was determined to 2.8 Å, revealing a hexadecameric particle with 

8-fold dihedral symmetry (D8), consisting of two ring-shaped octameric complexes 

(C8) that are joined in a tail-to-tail interaction (Extended Data Fig. 2 and Fig. 1). The 

CsgGC1S protomer shows an anticodon binding domain (ABD)-like fold that is 

extended with two -helices at the N- and C-terminus (N and C, resp.; Fig. 1 and 

Extended Data Fig. 3a-c). Additional CsgG-specific elements are an extended loop 

linking 1 and 1, two insertions in the loops connecting 3-4 and 5-3 and an 

extended 2 helix that is implicated in CsgG oligomerization by packing between 



adjacent monomers (Fig. 1b). Further inter protomer contacts are formed between the 

back of the 3-5 sheet and the extended 1-1 loop (Extended Data Fig. 3d, e).  

In the CsgGC1S structure, residues 1-17, which would link 1 to the N-terminal 

lipid anchor, are disordered and no obvious transmembrane (TM) domain can be 

discerned (Fig. 1). Attenuated Total Reflection Fourier Transform Infrared 

spectroscopy (ATR-FTIR) of CsgGC1S and native, membrane-extracted CsgG reveals 

the latter exhibits a higher absorption in the -sheet region (1625-1630 cm-1) and a 

concomitant reduction in the random coil and -helical regions (1645-1650 cm-1 and 

1656 cm-1, resp., Fig. 2a), suggesting membrane associated CsgG contains a -barrel 

domain. Candidate sequence stretches for -strand formation are found in the poorly 

ordered, extended loops connecting 3-4 (residues 134-154) and 5-3 (residues 

184-204) and deletion of these resulted in the loss of curli formation (Fig. 2b). The 

crystal structure of detergent extracted CsgG confirms a conformational rearrangement 

of both regions into two adjacent -hairpins, extending the -sheet formed by 3-4 

(TM1) and 5-3 (TM2), respectively (Fig. 2c). Their juxtaposition in the CsgG 

oligomer gives rise to a composite 36-stranded -barrel (Fig. 2d). Remarkably, 

whereas the crystallized CsgCC1S oligomers show a D8 symmetry, the CsgG structure 

shows D9 symmetry, with CsgG protomers retaining equivalent interprotomer 

contacts, except for a 5 rotation relative to the central axis and a 4 Å translation along 

the radial axes  (Extended Data Fig. 2). This observation is reconciled in the in 

solution oligomeric states revealed by single-particle EM, which exclusively finds C9 

and D9 symmetries for membrane-extracted CsgG (Extended Data Figs 2). The 

predominant presence of monomers in the non-lipidated sample and the symmetry 

mismatch with the membrane-bound protein argue that before membrane insertion, 

CsgG is targeted to the outer membrane in a monomeric, LolA-bound form and that 



C8 and D8 particles are an artifact of highly concentrated solutions of CsgGC1S. 

Furthermore, we show the C9 nonamer rather than the D9 complex forms the 

physiologically relevant particle since in isolated E. coli outer membranes, cysteine 

substitutions in residues enclosed by the observed tail-to-tail dimerization are 

accessible to maleimide-polyethylene glycol (PEG – 5 kDa) labeling (Extended Data 

Fig. 4).  

Thus, CsgG forms a nonameric transport complex of 120 Å width and 85 Å 

height. The complex traverses the outer membrane through a 36-stranded -barrel of 

40 Å inner diameter (Fig. 2e). The N-terminal lipid anchor is separated from the core 

domain by an 18-residue linker that wraps over the adjacent protomer (Extended Data 

Fig. 3d). The diacylglycerol- and amide-linked acyl chain on the N-terminal Cys are 

not resolved in the electron density maps, but based on the location of Leu 2 the lipid 

anchor is expected to flank the outer wall of the -barrel. On the periplasmic side, the 

transporter forms a large solvent–accessible cavity of 35 Å inner diameter and 40 Å 

height that opens to the periplasm in a 50 Å mouth formed by helix 2 (Fig. 2e). At its 

apex, this periplasmic vestibule is separated from the TM channel by a conserved 12-

residue loop connecting 1-1 (C-loop, “CL”; Fig. 2e, Fig. 3a, b), which constricts the 

secretion conduit to a solvent-excluded diameter of 9.0 Å (Fig. 3a, c). These pore 

dimensions would be compatible with the residence of one to two (e.g. a looped 

structure) extended polypeptide segments, with 5 residues spanning the height of the 

constriction (Extended Data Fig. 5). The luminal lining of the constriction is composed 

of three stacked concentric rings formed by the side chains of residues Y51, N55 and 

F56 (Fig. 3a, b). Strikingly, in the anthrax PA63 toxin, a topologically equivalent 

concentric Phe ring (referred to as -clamp) lines the entry of the translocation channel 

and catalyzes polypeptide capture and passage 20-22. Multiple sequence alignment of 



CsgG-like translocators shows the absolute conservation of the F56 and the 

conservative variation of N55 to Ser or Thr (Extended Data Fig. 6). Mutation of F56 

or N55 to Ala leads to a near loss in curli production (Fig. 3d), whereas a N55S 

substitution retains wild-type secretion levels, together alluding to the requirement of 

the stacked configuration of a -clamp followed by a H-bond donor/acceptor in the 

CsgG constriction (Extended Data Fig. 6, Fig. 3b).  

Single-channel current recordings of CsgG reconstituted in planar phospholipid 

bilayers led to a steady current of 43 ± 5 pA (n = 32), - 45 ± 4 pA (n = 13) using 

standard electrolyte conditions and a potential of + 50 mV or – 50 mV, respectively 

(Fig. 3e, f, Extended Data Fig. 7). The observed current was in good agreement with 

the predicted value of 46 pA calculated based on a simple three-segment pore model 

and the dimensions of the central constriction seen in the X-ray structure (Fig. 3c). A 

second, low conductance conformation can also be observed under negative electrical 

field potential (-25 ± 4 pA; Extended Data Fig. 7). It is unclear, however, whether this 

species is present under physiological conditions.  

Our structural data and single-channel recordings infer CsgG forms an ungated 

peptide diffusion channel. In PA63, a model peptide diffusion channel, polypeptide 

passage depends on a pH-driven Brownian ratchet that rectifies the diffusive steps in 

the translocation channel20-22. Such proton gradients, however, are not present at the 

outer membrane, requiring an alternative driving force. Whereas at elevated 

concentrations CsgG facilitates non-selective diffusive leakage of periplasmic 

polypeptides, secretion is specific for CsgA under native conditions and requires the 

periplasmic factor CsgE16,23. In presence of an excess CsgE, purified CsgG forms a 

slower migrating species on native PAGE (Fig. 4a). SDS-PAGE analysis shows this 

new species consists of a CsgG:CsgE complex that is present in a 1:1 stoichiometry 



(Fig. 4b). CryoEM visualization of CsgG:CsgE isolated by pull-down affinity 

purification reveals a 9-fold symmetrical particle corresponding to the CsgG nonamer 

and an additional capping density at the entrance to the periplasmic vestibule, similar 

in size and shape to a C9 CsgE oligomer also observed by single-particle EM and size 

exclusion chromatography (Fig. 4c-e, Extended Data Fig. 8). The location of the 

observed CsgG:CsgE contact interface is corroborated by blocking point mutations in 

CsgG helix 2 (Extended Data Fig. 8). In agreement with a capping function, single 

channel recordings show that CsgE binding to the translocator leads to the specific 

silencing of its ion conductance (Fig. 4f, Extended Data Fig. 7). This CsgE capping of 

the channel appears an all or none response in function of CsgE nomamer binding. At 

saturation, CsgE binding induces full blockage of the channel, whilst around 10 nM, 

an equilibrium between CsgE binding and dissociation events results in an 

intermittently blocked or fully open translocator. At 1 nM or below, transient (<1 

millisecond) partial blockage events may stem from short-lived encounters with 

monomeric CsgE. 

 Thus, CsgG and CsgE appear to form an encaging complex enclosing a central 

cavity of ~24.000 Å3, reminiscent in appearance to the substrate binding cavity and 

encapsulating lid structure seen in the GroEL chaperonin and GroES cochaperonin24. 

The CsgG:CsgE enclosure would be compatible with the full or partial entrapment of 

the 129-residue CsgA. Interestingly, the caging of a translocation substrate has 

recently been observed in ABC toxins25. Spatial confinement of an unfolded 

polypeptide leads to a decrease in its conformational space, creating an entropic 

potential that has been shown to favor polypeptide folding in case of chaperonins24,26. 

Similarly, we speculate that in curli transport the local high concentration and 

conformational confinement of curli subunints in the CsgG vestibule would generate 



an entropic free energy gradient over the translocation channel (Fig. 4g). Upon capture 

into the constriction, the polypeptide chain is then expected to progressively move 

outwards by Brownian diffusion, rectified by the entropic potential generated from the 

CsgE-mediated confinement and/or substrate-trapping near the secretion channel. In 

case of a full confinement in the pre-constriction cavity, escape of an unfolded 129-

residue polypeptide to the bulk solvent would correspond to an entropic free energy 

release of up to ~80 kcal/mole 27.  The initial entropic cost of substrate docking and 

confinement are likely to be at least partially compensated by binding energy released 

during assembly of the CsgG:CsgE:CsgA complex and an already lowered CsgA 

entropy in the periplasm. On theoretical grounds, three potential routes of CsgA 

recruitment to the secretion complex can be envisaged (Extended Data Fig. 9).  

Curli-induced biofilms form a fitness and virulence factor in pathogenic 

Enterobacteriaceae 4,5. Their unique secretion and assembly properties are also rapidly 

gaining interest for (bio)technological application23,28,29. Our structural 

characterization and biochemical study of two key secretion components provide a 

tentative model of an iterative mechanism for the membrane translocation of unfolded 

protein substrates in absence of a hydrolysable energy source, a membrane potential or 

ion gradient (Fig. 4e, Extended Data Fig. 9). The full validation and deconstruction of 

the contributing factors in the proposed secretion model will require the in vitro 

reconstitution of the translocator in order to accurately follow transport kinetics at the 

single molecule level.  
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Figure Legends 

Figure 1. X-ray structure of CsgGC1S in pre-pore conformation. (a) Ribbon 

diagram of the CsgGC1S monomer colored as blue to red rainbow from the N- to C-

terminus. Secondary structure elements are labeled according the ABD-like fold, with 

the additional N- and C-terminal -helices, and extended loop connecting 1and 1 

labeled N,C and CL (C-Loop), respectively. (b) Side view of the CsgGC1S C8 

http://www.nature.com/reprints
mailto:han.remaut@vib-vub.be


octamer with subunits differentiated by color and one subunit oriented and colored as 

in (a).  

 

Figure 2. Structure of CsgG in its channel conformation. (a) Amide I region (1700 

– 1600 cm-1) of ATR-FTIR spectra of CsgGC1S (blue) and membrane-extracted CsgG 

(red) (b) TM1 and TM2 sequence (bilayer facing residues in blue) and Congo Red 

binding of E. coli BW25141csgG complemented with wild type csgG (WT), empty 

vector or csgG lacking underscored fragments of TM1 or TM2. (c) Overlay of CsgG 

monomer in pre-pore (light blue) and channel conformation (tan). (d, e) Side and 

cross-sectional view of CsgG nonamers in ribbon and surface representation, and 

Helix 2, the core domain and TM hairpins shown in blue, light blue and tan, 

respectively. A single protomer is colored according Fig. 1a. Magenta spheres show 

position of Leu 2. (OM: outer membrane, CL: C-loop). 

 

Figure 3. CsgG channel constriction. (a) Cross-section of CsgG channel constriction 

and its solvent-excluded diameters. (b) The constriction is composed of 3 stacked 

concentric side chain layers: Y51, N55 and F56, preceded by F48 from the periplasmic 

side. (c) Congo Red binding of E. coli BW25141csgG complemented with csgG 

(WT), empty vector or csgG carrying indicated constrictions mutants. (c, d) 

Representative single-channel current recordings and conductance histogram (d) of 

CsgG reconstituted in planar phopsholipid bilayers (PPB) and measured under an 

electrical field of + (n=32) or -50 mV (n=13).  

 

Figure 4. Model of CsgG transport mechanism. (a) Native PAGE of CsgE (E), 

CsgG (G) and CsgG supplemented with an excess CsgE (E+G) shows the formation of 



a CsgG:CsgE complex (E:G*). (b) SDS-PAGE of CsgE (E), CsgG  (G) and the E:G* 

complex recovered from native PAGE. (MW: Molecular Weight markers in kDa). (c) 

Selected class averages of CsgG:CsgE particles. From left to right: top and side view 

visualized by cryo-EM; and comparison of negatively stained side views with CsgG 

nonamers. (d) CryoEM averages of top and tilted side viewed CsgE particles. 

Rotational autocorrelation shows 9-fold symmetry. (e) 3D reconstruction of 

CsgG:CsgE (24 Å resolution, 1221 single particles) shows a nonameric particle 

comprised of CsgG (blue) and an additional density assigned as a CsgE nonamer 

(orange). (f) Single channel current recordings of PPB-reconstituted CsgG at + or -50 

mV and supplemented with incremental concentrations of CsgE. (horizontal scale bars 

lie at 0 pA) (g) Tentative model for CsgG-mediated protein secretion. CsgG and CsgE 

are proposed to form a secretion complex that entraps CsgA (discussed in Extended 

Data Figure 9), generating an entropic potential over the channel. Upon capture of 

CsgA in the channel constriction, a S-rectified Brownian diffusion facilitates the 

progressive translocation of the polypeptide across the OM.   

 

 

Methods 

Cloning and strains 

Expression constructs for production of outer membrane localized C-terminally 

StrepII-tagged CsgG (pPG1) and periplasmic C-terminally StrepII-tagged CsgGC1S 

(pPG2) have been described in Goyal et al. 2013 19. For selenomethionine labeling, 

StrepII-tagged CsgGC1S was expressed in the cytoplasm because of increased yields. 

Therefore, pPG2 was altered to remove the N-terminal signal peptide using inverse 

PCR with primers forward: 5'- TCT TTA AC CGC CCC GCC TAA AG -3' and 

reverse: 5'- CAT TTT TTG CCC TCG TTA TC -3' (pPG3). For phenotypic assays, a 

csgG deletion mutant of E. coli BW25141 (E. coli NVG2) was constructed by the 



method described by Datsenko and Wanner 30 (with primers 5’- AAT AAC TCA ACC 

GAT TTT TAA GCC CCA GCT TCA TAA GGA AAA TAA TCG TGT AGG CTG 

GAG CTG CTT C-3’ and 5’- CGC TTA AAC AGT AAA ATG CCG GAT GAT 

AAT TCC GGC TTT TTT ATC TGC ATA TGA ATA TCC TCC TTA G-3’). The 

various CsgG substitution mutants used for Cys accessibility assays and for 

phenotypic probing of the channel constriction were constructed by site-directed 

mutagenesis (QuikChange protocol, Stratagene) starting from pMC2, a pTRC99a 

vector containing csgG under control of the trc promotor 14. 

Protein expression and purification 

CsgG and CsgGC1S were expressed and purified as described 19. Briefly, CsgG was 

recombinantly produced in E. coli BL 21 (DE3) transformed with pPG1 and extracted 

from isolated outer membranes using 1 % n-dodecyl--D-maltoside (DDM) in buffer 

A: 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 1 mM ethylene diamine tetraacetic acid 

(EDTA), 1 mM dithiothreitol (DTT). Strep-II tagged CsgG was loaded onto a 5 mL 

Strep-Tactin sepharose column (Iba GmbH) and detergent-exchanged by washing with 

20 column volumes buffer A supplemented with 0.5% tetraethylene glycol monooctyl 

ether (C8E4, Affymetrix) and 4 mM lauryldimethylamine-N-oxide (LDAO, 

Affymetrix). The protein was eluted by addition of 2.5 mM D-desthiobiotin and 

concentrated to 5 mg mL-1 for crystallization experiments. For selenomethionine 

labeling, CsgGC1S was produced in the Met auxotrophic strain B834 (DE3) 

transformed with pPG3 and grown on M9 minimal medium supplemented with 40 mg 

L-1 L-selenomethionine. Cell pellets were resuspended in 50 mM Tris-HCl pH 8.0, 

150 mM NaCl, 1 mM EDTA, 5 mM DTT, supplemented with cOmplete Protease 

Inhibitor Cocktail (Roche) and disrupted by passage through a TS series cell disruptor 

(Constant Systems Ltd) operated at 20 kPsi. Labeled CsgGC1S was purified as 

described 19. 5 mM dithiothreitol (DTT) was added throughout the purification 



procedure to avoid selenomethionine oxidation. 

CsgE was produced in E. coli NEBC2566 cells harboring pNH27 16. Cell lysates in 25 

mM Tris-HCl pH 8.0, 150 mM NaCl, 25 mM Imidazol, 5 % (v/v) glycerol were 

loaded on a HisTrapTM FF (GE Healthcare). CsgE-his was eluted with a linear gradient 

to 500 mM Imidazol in 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 (v/v) % glycerol 

buffer. Fractions containing CsgE were supplemented with 250 mM (NH4)2SO4 and 

applied on a 5 ml HiTrapTM Phenyl HP column (GE Healthcare) equilibrated with 20 

mM Tris-HCl pH 8.0, 100 mM NaCl, 250 mM (NH4)2SO4, 5 (v/v) % glycerol. A 

linear gradient to 20 mM Tris-HCl pH 8.0, 10 mM NaCl, 5 (v/v) % glycerol was 

applied for elution. CsgE containing fractions were loaded on Superose 6 PREP Grade 

10/600 (GE Healthcare) column equilibrated in 20 mM Tris-HCl pH 8.0, 100 mM 

NaCl, 5 (v/v) % glycerol. 

 

 

In solution oligomeric state assessment 

Approximately 0.5 mg each of detergent-solubilized CsgG (0.5% C8E4, 4 mM 

LDAO) and CsgGC1S were applied to a Superdex 200 10/300 GL analytical gel 

filtration column (GE Healthcare) equilibrated with 25 mM Tris-HCl pH 8.0, 500 mM 

NaCl, 1 mM DTT, 4 mM LDAO, and 0.5% C8E4 (CsgG) or 25 mM Tris-HCl pH 8.0, 

200 mM NaCl (CsgGC1S), and run at 0.7 mL min-1. The column elution volumes were 

calibrated using bovine thyroglobulin, bovine -globulin, chicken ovalbumin, horse 

myoglobulin and vitamin B12 (Bio-Rad) (Extended Data Fig. 2). Membrane-

extraceted CsgG, 20 μg of the detergent-solubilized protein was also run on a 3-10% 

blue native PAGE using the procedure described by Swamy et al. 31 (Extended Data 

Fig. 2). NativeMark (Life Technologies) unstained protein standard (7 μL) was used 



for molecular weight estimation. 

 

Crystallization, data collection and structure determination 

Selenomethionine labeled CsgGC1S was concentrated to 3.8 mg mL-1 and crystallized 

by sitting drop vapor diffusion against a solution containing 100 mM sodium acetate 

pH 4.2, 8% PEG 4000 and 100 mM sodium malonate pH 7.0. Crystals were incubated 

in crystallization buffer supplemented with 15 % glycerol and flash-frozen in liquid 

nitrogen. Detergent-solubilized CsgG was concentrated to 5 mg mL-1 and crystallized 

by hanging drop vapor diffusion against a solution containing 100 mM Tris-HCl pH 

8.0, 8% PEG 4000, 100 mM NaCl and 500 mM MgCl2. Crystals were flash-frozen in 

liquid nitrogen and cryoprotected by the detergent present in the crystallization 

solution. For optimization of crystal conditions and screening for crystals with good 

diffraction quality, crystals were analyzed on beamlines Proxima-1, Proxima-2a 

(Soleil, France), PX-I (Swiss Light Source, Swiss), I02, I03, I04, I24 (Diamond Light 

Source, UK) and ID14eh2, ID23eh1, ID23eh2 (ESRF, France). Final diffraction data 

used for structure determination of CsgGC1S and CsgG were collected at beamlines I04 

and I03, respectively (Diamond Light Source, UK) (see Extended Data Table 1 for 

data collection and refinement statistics). Diffraction data for CsgGC1S were processed 

using the Xia2 and the XDS package32,33. Crystals of CsgGC1S belonged to space group 

P1 with unit cell dimensions of a = 101.3 Å, b = 103.6 Å, c = 141.7 Å, α = 111.3°, β = 

90.5°, γ = 118.2°, containing 16 protein copies in the asymmetric unit (AU). For 

structure determination and refinement, date collected at 0.9795 Å wavelength were 

truncated at 2.8 Å based on an I/I cutoff of 2 in the highest resolution shell. The 

structure was solved using experimental phases calculated from a Single Anomalous 

Dispersion (SAD) experiment. 92 selenium sites were located in the AU using ShelxC 

and ShelxD34, and refined and used for phase calculation with Sharp35 (phasing power: 



0.79, figure of merit (FOM): 0.25). Experimental phases were density modified and 

non-crystallographic symmetry (NCS) -averaged using Parrot36 (Extended Data Fig. 

10; FOM: 0.85). An initial model was built with Buccaneer37 and refined by iterative 

rounds of maximum likelihood refinement with Phenix refine38 and manual inspection 

and model (re)building in Coot39. The final structure contains 28853 atoms in 3700 

residues belonging to 16 CsgGC1S chains (Extended Data Figs. 2), with a molprobity40 

score of 1.34, and 98 % of the residues lying in favored regions of the Ramachandran 

plot (99.7 % in allowed regions). Electron density maps showed no unambiguous 

density corresponding to possible solvent molecules and no water molecules or ions 

were, therefore, built in. 16-fold NCS averaging was maintained throughout 

refinement, using strict and local NCS restraints in early and late stages of refinement, 

respectively.  

Diffraction data for CsgG were collected from a single crystal at 0.9763 Å wavelength 

and were indexed and scaled, using the XDS package32,33, in space group C2 with unit 

cell dimensions a = 161.7 Å, b = 372.3 Å, c = 161.8 Å and β = 92.9°, encompassing 18 

CsgG copies in the AU and a 72 % solvent content. Diffraction data for structure 

determination and refinement were elliptically truncated to resolution limits of 3.6 Å, 

3.7 Å and 3.8 Å along reciprocal cell directions a*, b* and c* and anisotropically 

scaled using the Diffraction Anisotropy Server41. Molecular replacement using the 

CsgGC1S monomer proved unsuccessful. Analysis of the self rotation function revealed 

D9 symmetry in the asymmetric unit (not shown). Based on the CsgGC1S structure, a 

nonameric search model was generated in the assumption that upon going from a C8 to 

C9 oligomer, the interprotomer arc at the particle circumference would stay 

approximately the same as the interprotomer angle changes form 45 to 40, giving a 

calculated increase in radius of approximately 4 Å. Using the calculated nonamer as 

search model, a molecular replacement solution containing to copies was found with 



Phaser42. Inspection of density-modified and NCS-averaged electron density maps 

(Parrot36; Extended Data Fig. 10) allowed manual building of the TM1 and TM2 and 

remodeling of adjacent residues in the protein core, as well as the building of residues 

2 to 18, which were missing from the CsgGC1S model and link the 1 helix to the N-

terminal lipid anchor. Refinement of the CsgG model was performed with Buster-

TNT43 and Refmac544 for initial and final refinement rounds, respectively. 18-fold 

local NCS restraints were applied throughout refinement and Refmac5 was run 

employing a jelly-body refinement with sigma 0.01 and H-bond restraints generated 

by Prosmart45. The final structure contains 34165 atoms in 4451 residues belonging to 

18 CsgG chains (Extended Data Fig. 2), with a molprobity score of 2.79 and 93.0 % of 

the residues lying in favored regions of the Ramachandran plot (99.3 % in allowed 

regions). No unambiguous electron density corresponding the N-terminal lipid anchor 

could be discerned.  

 

Congo Red assay 

For analysis of Congo Red binding, a bacterial overnight culture grown at 37°C in LB 

medium was diluted in Lysogeny Broth (LB) till an OD600nm of 0.5. Five l was 

spotted on LB agar plates supplemented with ampicillin (100 mg L-1), Congo Red (100 

mg l-1) and 0.1% (w/v) isopropyl β-D-1-thiogalactopyranoside (IPTG). Plates were 

incubated at room temperature for 48 hours to induce curli expression. The 

development of the colony morphology and dye binding was observed at 48 hours. 

 

Cysteine accessibility assays 

Cysteine mutants were generated in pMC2 using site directed mutagenesis and 

expressed in E. coli LSR12 7. Bacterial cultures grown overnight were spotted onto LB 



agar plates containing 1 mM IPTG and 100 mg L-1 ampicillin. Plates were incubated at 

room temperature and cells were scrapped after 48 hours, resuspended in 1 mL 

Phosphate Buffered Saline (PBS) and normalized using OD600nm. The cells were lysed 

by sonication and centrifuged for 20 sec at 3000 RCF at 4°C to remove unbroken cells 

from cell lysate and suspended membranes. Proteins in the supernatant were labeled 

using 15 mM methoxypolyethylene glycol-maleimide (MAL-PEG 5 kDa) for one hour 

at room temperature. The reaction was stopped using 100 mM DTT and centrifuged at 

40, 000 rpm in 50.4 Ti rotor for 20 min at 4°C to pellet total membranes. The pellet 

was washed with 1% sodium lauroyl sarcosinate to solubilize cytoplasmic membranes 

and again centrifuged. The resulting outer membranes were resuspended and 

solubilized using PBS containing 1% DDM. Metal affinity pull downs done using 

nickel beads were used for SDS-PAGE and anti his western blots. E. coli LSR12 cells 

with empty pMC2 vector were used as negative control. 

 

Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) 

spectroscopy 

ATR-FTIR measurements were performed on an Equinox 55 infrared 

spectrophotometer (Bruker), continuously purged with dried air, equipped with a 

liquid nitrogen-refrigerated Mercury Cadmium Telluride detector and a Golden Gate 

reflectance accessory (Specac). The internal reflection element was a diamond crystal 

(2 mm x 2 mm) and the beam incidence angle was of 45°. 1 µL of each purified 

protein sample was spread at the surface of the crystal and dried under a gaseous 

nitrogen flow to form a film. Each spectrum, recorded at a 2 cm-1 resolution, was an 

average of 128 accumulations for improved signal-to-noise ratio. All the spectra were 

treated with water vapor contribution subtraction, smoothed at a final resolution of 4 



cm−1 by apodization and normalized on the area of Amide I band (1700 – 1600 cm-1) 

in order to allow their comparison46. 

 

Negative stain EM and symmetry determination 

Negative stain EM was used to monitor in solution oligomerization states of CsgG, 

CsgGC1S and CsgE. CsgE, CsgGC1S  and amphipol-bound CsgG were adjusted to a 

concentration of 0.05 mg mL-1 and applied to glow-discharged carbon-coated copper 

grids (CF-400, Electron Microscopy Sciences). After 1 minute incubation, samples 

were blotted, then washed and stained in 2 % uranyl acetate. Images were collected on 

a Tecnai T12 BioTWIN LaB6 microscope operating at a voltage of 120 kV, at 

magnification of 49,000 and defocus between 800 - 2000 nm. CTF, phase flipping and 

particle selection was performed as described for cryo-EM. For membrane-extracted 

CsgG, octadecameric particles (1780 total) were analyzed separately from nonamers 

and top views. For purified CsgE a total of 2452 particles were analyzed. 3D models 

were obtained as described for the CsgG:CsgE cryo-EM analysis below and refined by 

several rounds of MRA, MSA and anchor set refinement. In all cases, after 

normalization and centering, images were classified using IMAGIC-4D as described 

in the cryo-EM section The best classes corresponding to characteristic views were 

selected for each set of particles. Symmetry determination of CsgG top views was 

performed using the best class averages with approximately 20 images per class. The 

rotational auto-correlation function was calculated using IMAGIC and plotted. 

 

CsgG:CsgE complex formation 

For CsgG:CsgE complex formation, the solubilizing detergents in purified CsgG were 

exchanged for Amphipols A8-35 (Anatrace) by adding 120 L CsgG (24 mG mL-1 

protein in 0.5% C8E4, 4 mM LDAO, 25 mM Tris-HCl pH 8.0, 500 mM NaCl, 1 mM 



DTT) to 300 L detergent-destabilized liposomes (1mg mL-1 DMPC and 0.4% 

LDAO) and incubating for 5 minutes on ice before the addition of 90 L of A8-35 

amphipols at 100 mg mL-1stock. After additional 15 min incubation on ice, the sample 

was loaded on a Superose 6 10/300 GL (GE Healthcare) column and gel filtration was 

performed in 200 mM NaCl, 2.5% xylitol, 25 mM Tris pH 8, and 0.2 mM DTT. Equal 

volumes of purified monomeric CsgE in 200mM NaCl, 2.5% xylitol, 25 mM Tris-HCl 

pH 8, and 0.2mM DTT was added to the amphipol-solubilized CsgG at final protein 

concentrations of 15 and 5 M for CsgE and CsgG, respectively, and the sample was 

run at 125 V at 18 C on a 4.5 % native PAGE in 0.5x TBE (Tris/Borate/EDTA) 

buffer. For the second, denaturing dimension, the band corresponding to the 

CsgG:CsgE complex was cut out of unstained lanes ran in parallel on the same gel, 

boiled for 5 minutes in Laemmli buffer (60 mM Tris-HCl pH 6.8, 2% SDS, 10% 

glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) and run in a 4-20% SDS-

PAGE. Purified CsgE and CsgG were run alongside the complex as control samples. 

Gels were stained with InstantBlueTM coomassie for visual inspection or SYPRO 

orange for stoichiometry assessment of the CsgG:CsgE complex by fluorescence 

detection (Typhoon FLA 9000) of the CsgE and CsgG bands on SDS-PAGE, yielding 

a CsgG/CsgE ratio of 0.97. 

 

CsgG:E CryoEM 

Cryo electron microscopy was used to determine the in solution structure of the C9 

CsgG:CsgE complex. CsgG:CsgE complex prepared as described above was bound 

and eluted from a HisTrapTM FF (GE Healthcare) to remove unbound CsgG and upon 

elution immediately applied on a Quantifoil R2/2 carbon coated grids (Quantifoil 

Micro Tools GmbH) that had been glow discharged at 20mA for 30 seconds. Samples 



were plunge-frozen in liquid nitrogen using an automated system (Leica) and 

visualized on a FEI F20 microscope operating at a voltage of 200 kV, a nominal 

magnification of 50,000 under low dose conditions and a defocus range of 1.4-3 μm. 

Image frames were recorded on a Falcon II detector. The pixel size at the specimen 

level was 1.9 Å per pixel. The CTF (contrast transfer function) parameters were 

assessed using CTFFIND3 47, and the phase flipping was done in SPIDER 48. Particles 

were automatically selected from CTF-corrected micrographs using BOXER (EMAN2 

49).  Images with an astigmatism of more than 10% were discarded. 4881 particle 

images were selected from 145 frames and windowed into 128x128 pixel boxes. 

Images were normalized to the same mean and standard deviation and high-pass 

filtered at a low-resolution cut-off of ~200 Å. They were centered, and subjected to a 

first round of multi-statistical analysis (MSA).  An initial reference set was obtained 

using reference free classification in IMAGIC-4D (Image Science Software, GmbH). 

The best classes corresponding to characteristic side views of the C9 cylindrical 

particles were used as references for the multireference alignment (MRA). For CsgG:E 

complex, the first 3D model was calculated from the best 125 characteristic views 

(with good contrast and well defined features) encompassing 1221 particles of the 

complex with orientations determined by angular reconstitution (Image Science 

Software, GmbH). The 3D map was refined by iterative rounds of MRA, MSA and 

anchor set refinement. The resolution was estimated by Fourier Shell Correlation 

(FSC) accordingly to the 0.5 criteria level as 24 Å (Extended Data Fig. 7). 

Visualization of the map and figures were done in UCSF Chimera  50.  

 

Bile salt toxicity assay 



Outer membrane permeability was investigated by reduced growth on agar plates 

containing bile salts. Five l of tenfold serial dilutions of E. coli LSR12 7 cells 

harbouring both pLR42 16 and pMC2 14 (or derived Helix 2 mutants) were spotted on 

McConkey agar plates containing 100 g L-1 ampicillin, 25 g L-1 chloramphenicol, 1 

mM IPTG with or without 0.2% (w/v) L-arabinose. After overnight incubation at 37°C 

colony growth was examined.  

 

Single-channel current recordings 

Single-channel current recordings were performed using parallel high-resolution 

electrical recording with the Orbit 16 kit from Nanion (Munich, Germany). Briefly, 

horizontal bilayers of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (Avanti Polar 

Lipids) were formed over microcavities (of sub-picoliter volume) in a 16-channel 

multielectrode cavity array (MECA) chip (Ionera, Freiburg, Germany) 51. Both the cis 

and trans cavities above and below the bilayer contained 1.0 M KCl, 25 mM Tris-HCl, 

pH 8.0. To insert channels into the membrane, CsgG dissolved in 25 mM Tris pH 8.0, 

500 mM NaCl, 1 mM DTT, 0.5% C8E4, 5 mM LDAO was added to the cis 

compartment to a final concentration of 90 – 300 nM. To test the interaction of the 

CsgG channel with CsgE, a solution of the latter protein dissolved in 25 mM Tris pH 

8.0 and 150 mM NaCl was added to the cis compartment to a final concentration of 

0.1, 1, 10 and 100 nM. Transmembrane currents were recorded at a holding potential 

of +50 mV and -50 mV (with the cis side grounded) using a Tecella Triton 16 channel 

amplifier at a low-pass filtering frequency of 3 kHz and a sampling frequency of 10 

kHz. Current traces were analyzed using the Clampfit of the pClamp suite (Molecular 

Devices, USA). Plots were generated using Origin 8.6 (Microcal, USA) 52.  



Measured currents were compared with those calculated based on the pore dimensions 

of the CsgG X-ray structure, modeled to be composed of three segments: (1) the 

transmembrane section, (2) the periplasmic vestibule, and (3) the inner channel 

constriction connecting the two. The corresponding resistances were calculated as: 

R1 =L1/( π D1d1 κ )  

R2 =L2 /( π D2d2 κ ) 

R3 =L3 /( π d1d2 κ ) 

where L1, L2, and L3 are the axial lengths of the segments, measuring 3.5 nm, 4.0 nm, 

and 2.0 nm, respectively, and D1, d1, D2 and d2 are the maximum and minimum 

diameters of segments 1 and 2, measuring 4.0 nm, 0.8 nm, 3.4 nm, and 0.8 nm, 

respectively. The conductivity κ has a value of 10.6 S m-1. The current was calculated 

by inserting R1, R2 and R3 and voltage V = 50 mV into: 

 I =V/(R1+R2 +R3)  

Access resistance was not found to significantly alter the predicted current. 

 

Extended Data: 



Extended Data Figure 1 | Curli biosynthesis pathway in E. coli. The major curli 

subunit CsgA (light green) is secreted from the cell as a soluble monomeric protein. 

The minor curli subunit CsgB (dark green) is associated with the outer membrane 

(OM) and acts as a nucleator for the conversion of CsgA from a soluble protein to 

amyloid deposit. CsgG (orange) assembles into an oligomeric curli-specific 

translocation channel in the OM. CsgE (purple) and CsgF (light blue) form soluble 

accessory proteins required for productive CsgA and CsgB transport and deposition. 

CsgC forms a putative oxido-reductase of unknown function. All curli proteins have 

putative Sec signal sequences for transport across the cytoplasmic (inner) membrane 

(IM). 

 

Extended Data Figure 2 | In solution oligomerization states of CsgG and CsgGC1S 

analyzed by size exclusion chromatography and negative-stain electron 

microscopy. (a) Raw negative-stain EM image of C8E4/LDAO-solubilized CsgG. 

Arrows indicate the different particle populations as labeled in the size exclusion 

profile shown in panel (g), being (a) aggregates of CsgG nonamers (b) CsgG 

octadecamers and (c) CsgG nonamers. Scale bar: 20 nm. (b) Representative class-

average for top- and side-views of the indicated oligomeric states. (c) Rotational auto-

correlation function graph of LDAO-solubilized CsgG in top view, showing 9-fold 

symmetry. (d) Raw negative-stain EM image of CsgGC1S. Arrows indicate the 

hexadecameric (d) and octameric (e) particles observed by size exclusion 

chromatography in panel (g). (e) Representative class-average for side-views of 

CsgGC1S oligomers. No top views were observed for this construct. (f) Table of elution 

volumes (EV) of CsgGC1S and CsgG particles observed by size exclusion 

chromatography shown in panel (g), calculated MW (MWcalc), expected MW 

(MWCsgG) according CsgG oligomerization state (CsgGn) and the particles symmetry 



as observed by negative-stain EM and X-ray crystallography. (g) Size exclusion 

chromatogram of CsgGC1S (black) and C8E4/LDAO-solubilized CsgG (grey) ran on 

Superdex 200 10/300 GL (GE Healthcare). (h, i) Ribbon representation of crystallized 

oligomers in top and side view show the D8 hexadecamers for CsgGC1S (h) and D9 

octadecamers for membrane-extracted CsgG (i). One protomer is colored in rainbow 

from N-terminus (blue) to C-terminus (red). The two C8 octamers (CsgGC1S) or C9 

nonamers (CsgG) that form the tail-to-tail dimers captured in the crystals are colored 

blue and tan. ‘r’ and ‘θ’ give radius and interprotomer rotation. 

 

Extended Data Figure 3 | Comparison of CsgG with structural homologues and 

interprotomer contacts in CsgG. (a) Ribbon diagram for the CsgGC1S monomer (eg. 

CsgG in pre-pore conformation) and (b) the nucleotide binding domain-like domain of 

TolB (PDB entry: 2hqs), respectively, colored both in rainbow from N-terminus (blue) 

to C-terminus (red). Common secondary structure elements are labeled equivalently. 

(c) Panels show CsgGC1S (grey) in superimposition with, from left to right, 

Xanthomonas campestris rare lipoprotein B (PDB entry: 2r76, colored pink), 

Shewanella oneidensis hypothetical lipoprotein – DUF330 (PDB entry: 2iqi, colored 

pink) and Escherichia coli TolB (PDB entry 2hqs, colored pink and yellow for the 

NTD and beta-propeller domain, resp.). CsgG-specific structural elements are labeled 

and colored as in upper left panel. (d, e) Ribbon diagram of two adjacent protomers as 

found in the CsgG structure, viewed along the plane of the bilayer, either from out-  

(c) or inside (d) the oligomer. One protomer is shown in rainbow (dark blue to red) 

from N- to C-terminus, a second protomer is shown in light blue (core domain), blue 

(helix 2 and tan (TM domain). Four main oligomerization interfaces are apparent: (1) 

6-3’ main chain interactions inside the -barrel, (2) the constriction loop (CL), (3) 

http://en.wikipedia.org/wiki/Voiceless_dental_non-sibilant_fricative


side chain packing of helix 1 (1) against 1-3-4-5 and (4) helix-helix packing of 

helix 2 (2). The 18-residue N-terminal loop connecting the lipid anchor (a magenta 

sphere shows C position of Leu 2) and N-terminal helix (N) is also seen to wrap 

over the adjacent two protomer. The projected position of the lipid anchor is expected 

to lie against the TM1 and TM2 hairpins of the +2 protomer  (not shown for clarity). 

 

 

Extended Data Figure 4 | Cys accessibility assays for selected surface residues in 

the CsgG oligomers. Ribbon representation of CsgG nonamers shown in periplasmic 

(a), side (b) or extracellular view (c). One protomer is colored in rainbow from N-

terminus (blue) to C-terminus (red). Cysteine substitutions are labeled and the 

equivalent locations of the S atoms are shown as spheres, colored according 

accessibility to maileimide-polyethyleneglycol (MAL-PEG, 5000 Da) labeling in E. 

coli outer membranes (d). Western blot of MAL-PEG reacted samples analyzed on 

SDS-PAGE show 5 kDa increase upon MAL-PEG binding of the introduced cysteine. 

Accessible (++ and +++), medium accessible (+) and inaccessible (-) sites are colored 

green, orange or red in the panels a, b, c and e. For R97 and R110 a second species at 

44 kDa is present, corresponding to a fraction of protein where both the introduced 

and native cysteine got labeled. (e) Side view of the dimerization interface in the D9 

octadecamer as present in the X-ray structure. Introduced cysteines in the dimerization 

interface or inside the lumen of the D9 particle are labeled. In membrane-bound CsgG, 

these residues are accessibility to MAL-PEG, demonstrating that the D9 particles are 

an artifact of concentrated solutions of membrane-extracted CsgG and that the C9 

complex forms the physiologically relevant species. Residues in the C-terminal helix 

(C; K242, D248 and H255) are found to be non- to poorly accessible, indicating C 



may form additional contacts with the E. coli cell envelope, possibly the peptidoglycan 

layer.  

 

 

Extended Data Figure 5 | Molecular dynamics simulation of CsgG constriction 

with model poly-alanine chain. Top (a) and side (b) view of the CsgG constriction 

modeled with a poly-alanine chain threaded through the channel in an extended 

conformation, here shown in C- to N-terminal direction. Substrate passage through the 

CsgG transporter is itself non sequence-specific16,23. For clarity, a poly-alanine chain 

was used for modeling the putative interactions of a passing polypeptide chain. The 

modeled area is composed of 9 concentric CsgG C-loops, each comprising residues 47 

to 58. Side chains lining the constriction are shown in stick representation, with F51 

colored slate blue, N55 (amide-clamp) colored cyan, F48 and F56 (-clamp) in light 

and dark orange, resp. N, O and H atoms (only hydroxyl or side chain amide H’s are 

shown) are colored blue, red and white, resp. The poly-alanine chain is colored green, 

blue, red and white for C, N, O and H atoms respectively. Solvent molecules (water) 

within 10 Å from the poly-alanine residues inside the constriction (residues labeled +1 

to +5) are shown as red dots. Panel (c) shows modeled solvation of the poly-alanine 

chain, position as in panel (b) and with C-loops removed for clarity (shown solvent 

molecules are those within 10 Å of the full poly-alanine chain). The height of the 

amide- and -clamps, the solvation of the poly-alanine chain is reduced to a single 

water shell that bridges the peptide backbone and amide-clamp side chains. Most side 

chains in the Y51 ring have rotated towards the solvent as compared to their inward, 

center pointing position observed in the CsgG (as well as CsgGC1S) X-ray structure. 

The model is the result off a 40 ns all atom explicit solvent molecular dynamics 



simulation with GROMACS53  using the AMBER99SB-ILDN54 force field and with 

the C atoms of the residues at the extremity of the C-loop (Q47 and T58) positionally 

restricted. 

 

 

Extended Data Figure 6 | Sequence conservation in CsgG homologues. (a) Surface 

representation of the CsgG nonamer colored according to sequence similarity (colored 

yellow to blue from low to high conservation score)55 and viewed from the periplasm 

(far left), the side (middle left), the extracellular (middle right) or as a cross-sectional 

side view (far right). The figures show that the regions of highest sequence 

conservation map to the entry of the periplasmic vestibule, the vestibular side of the 

constriction loop and the luminal surface of the TM domain. (b) Multiple sequence 

alignment (MST) of CsgG-like lipoproteins. The selected sequences were chosen from 

monophyletic clades across the phylogenetic three of CsgG-like sequences (not 

shown) in order to give a representative view of sequence diversity. Secondary 

structure elements are shown as arrows or bars for -strands and -helices, 

respectively, and are based on the E. coli CsgG crystals structure. (c, d) CsgG 

protomer in secondary structure representation (c) and a cross-sectional side view (d) 

of the CsgG nonamer in surface representation, both colored grey and with three 

continuous blocks of high sequence conservation colored red (HCR1), blue (HCR2) 

and yellow (HCR3). HCR1 and HCR2 shape the vestibular side of the constriction 

loop, HCR3 corresponds to helix 2, lying at the entry of the periplasmic vestibule. 

Inside the constriction, F56 is 100% conserved, whilst N55 can be conservatively 

substituted by Ser or Thr, eg. by a small polar side chain that can act as H-bond donor 

/ acceptor. The concentric side chain ring at the exit of the constriction (Y51) is not 



conserved. Strikingly, the presence of the Phe-ring at the entrance of the constriction is 

topologically similar the Phe427-ring (referred to as -clamp) in the Anthrax protective 

antigen PA63, where it was shown to catalyzes polypeptide capture and passage20. 

MST of toxB superfamily proteins reveals a conserved motif D(D/Q)F(S/N)S at the 

height of the Phe-ring. This is similar to the S(Q/N/T)FST motif seen in curli-like 

transporters. Although an atomic resolution structure of PA63 in pore conformation is 

not yet available, available structures suggest the Phe-ring may similarly be followed 

by a conserved H-bond donor / acceptor (S/N428) as a subsequent concentric ring in the 

translocation channel (note that the orientation of element is inversed in both 

transporters).   

 

 

Extended Data Figure 7 | CsgE oligomer and CsgG:CsgE complex. (a) Size 

exclusion chromatography of CsgE (Superose 6, 16/600; running buffer 20 mM Tris-

HCl pH8, 100 mM NaCl, 2.5% glycerol) shows an equilibrium of two oligomeric 

states, (1) and (2), with an apparent MW ratio of 9.16. Negative stain EM inspection 

of peak (1) shows discrete CsgE particles (5 representative class averages show inset, 

ordered by increasing tilt angles) compatible in size with 9 CsgE copies (b) Selected 

class average of CsgE oligomer observed in top view by cryo-EM and its rotational 

autocorrelation show the presence of C9 symmetry. (c) Fourier Shell Correlation (FSC) 

analysis of CsgG:CsgE cryo-EM model. 3D reconstruction achieved a resolution of 24 

Å as determined by Fourier shell correlation at a threshold of 0.5 correlation using 125 

classes corresponding to 1221 particles. (d) Overlay of CsgG:CsgE cryo-EM density 

and the CsgG nonamer observed in the X-ray structure. The overlays are shown 

viewed from the side as semi-transparent density (left) or as a cross-sectional view. (e) 

Congo Red binding of E. coli BW25141DcsgG complemented with wild type csgG 



(WT), empty vector (DcsgG) or csgG helix 2 mutants (single amino acid replacements 

labeled in single letter code). (f) Effect of bile salt toxicity on E. coli LSR12 

complemented with csgG (WT), or csgG carrying different helix 2 mutations, 

complemented with (+) or without (-) csgE. Tenfold serial dilution starting from 107 

bacteria were spotted on McConkey agar plates. Expression of the CsgG pore in the 

OM leads to an increased bile salt sensitivity that can be blocked by co-expression of 

CsgE . (g) Cross-sectional view of CsgG X-ray structure in molecular surface 

representation. CsgG mutants without an effect on CR binding or toxicity are shown in 

blue, mutants that interfere with CsgE-mediated rescue of bile salt sensitivity are 

indicated in red. 

 

 

Extended Data Figure 8 | Single-channel current analysis of CsgG and CsgG + 

CsgE pores. (a) Under negative field potential, CsgG pores show two conductance 

states. Upper left and right panels show a representative single-channel current trace 

of, respectively, the regular (measured at +50 mV, 0 mV and -50 mV) and low 

conductance forms (measured at 0 mV, + 50 mV, and - 50 mV. No conversions 

between both states were observed during the total observation time (n=22), indicating 

the conductance states have long life times (second to minute timescale). Lower left 

panel shows current histogram of regular and low conductance CsgG pores acquired at 

+ 50 mV and - 50 mV (n=32). IV curves for CsgG pores with regular and low 

conductance are shown in the lower right panel. The data represent the averages and 

standard deviations from at least 4 independent recordings. The nature or 

physiological existence of the low conductance form are unknown. (b) 

Electrophysiology of CsgG channels titrated with the accessory factor CsgE. The plots 

display the fraction of open, intermediate, and closed channel as a function of CsgE 



concentration. Open and closed states of CsgG are illustrated in Fig. 4f of the main 

manuscript. Increasing the concentration of CsgE to over 10 nM leads to the closure of 

CsgG pores. The effect occurs at both + 50 mV (left) and – 50 mV (right) ruling out 

the possibility that the pore blockade can be explained by electrophoresis of CsgE 

(calculated pI 4.7) into the CsgG pore. An infrequent (<5%) intermediate state has 

approximately half the conductance of the open channel. It may represent CsgE-

induced incomplete closures of the CsgG channel, or alternatively, it could represent 

the temporary formation of a CsgG dimer caused by the binding of residual CsgG 

monomer from the electrolyte solution to the membrane-embedded pore. The fraction 

for the three states was obtained from all-point histogram analysis of single-channel 

current traces. The histograms yielded peak areas for up to three states, and the 

fraction for a given state was obtained by dividing the corresponding peak area by the 

sum of all other states in the recording. Under negative field potential two open 

conductance states are discerned, similar to the observations for CsgG (see (a)). As 

both open channel variations were blocked by higher CsgE concentrations, the “open” 

traces in panel b combine both conductance forms. The data in the plot represent the 

averages and standard deviations from three independent recordings and channels. (c) 

The crystal structure, size exclusion chromatography and EM show that detergent 

extracted CsgG pores forms non-native tail-to-tail stacked dimers (eg. two 9-mers as 

D9 particle, Extended Data Fig. 2) at higher protein concentration. These dimers can 

also be observed in single channel recordings. Upper panel shows the single-channel 

current trace of a stacked CsgG pore at + 50 mV, 0 mV, and - 50 mV (left to right). 

Lower left panel shows current histogram of dimeric CsgG pores recorded at + 50 mV 

and - 50 mV. The experimental conductances of +16 ±2 and –16 ±3 pA (n=29) at + 

and – 50mV, respectively, are near the theoretically calculated value of 23 pA. Lower 

right panels shows IV curves for stacked CsgG pores. The data represent the averages 



and standard deviations from six independent recordings. (d) The possibility of CsgE 

to bind and block stacked CsgG pores was tested by electrophysiology. Single-channel 

current traces of stacked CsgG pore in the presence of 10 nM or 100 nM CsgE at + 50 

mV (upper), and – 50 mV (lower). The current traces show that otherwise saturating 

concentrations of CsgE do not lead to pore closure in case of stacked CsgG dimers. 

These observations are in good agreement with the mapping of the CsgG:CsgE contact 

zone to helix 2 and the mouth of the CsgG periplasmic cavity as discerned by EM and 

site-directed mutagenesis (Fig. 4 and Extended Data Fig. 7). 

 

 

Extended Data Figure 9 | Assembly and substrate recruitment of the CsgG 

secretion complex. The curli transporter CsgG and the soluble secretion co-factor 

CsgE form a secretion complex with 9:9 stoichiometry that encloses a ~24.000 Å3 

chamber that is proposed to entrap the CsgA substrate and facilitate its entropy-driven 

diffusion across the outer membrane (OM; Main text and Fig. 4). On theoretical 

grounds, three putative pathways for substrate recruitment and assembly of the 

secretion complex can be envisaged: (a) A catch-and-cap mechanism that entails the 

binding of CsgA to the apo CsgG translocation channel (1), leading to a 

conformational change in the latter that exposes a high affinity binding platform for 

CsgE binding (2). CsgE binding leads to capping of the substrate cage. Upon secretion 

of CsgA, CsgG would fall back into its low affinity conformation, leading to CsgE 

dissociation and liberation of the secretion channel for a new secretion cycle. (b) A 

dock-and-trap mechanism where periplasmic CsgA is first captured by CsgE (1), 

causing the latter to adopt a high affinity complex that docks onto the CsgG 

translocation pore (2), enclosing CsgA into the secretion complex. CsgA binding 

could be directly to CsgE oligomers or CsgE monomers, the latter leading to 



subsequent oligomerization and CsgG binding. Secretion of CsgA leads CsgE to fall 

back into its low affinity conformation and to dissociate from the secretion channel. 

(c) In a third model, CsgG and CsgE form a constitutive complex, where CsgE 

conformational dynamics cycle between an open and closed form in function of CsgA 

binding.  

Currently published or available data do not allow us to discriminate or put forward 

one of the putative recruitment modes or derivatives thereof.  

 

 

Extended Data Figure 10 | Data collection statistics and electron density maps of 

CsgGC1S and CsgG. (a) Data collection statistics for CsgGC1S and CsgG X-ray 

structures (b) 2.8 Å electron density map for CsgGC1S calculated using NCS-averaged 

and density-modified experimental SAD phases, and contoured at 1.5 . The map 

shows the region of the channel construction (CL; a single protomor is labeled) and is 

overlaid on top of the final refined model. (c) Electron density map (resolution: 3.6 Å, 

3.7 Å and 3.8 Å along reciprocal vectors a*, b* and c*, resp.) in the CsgG TM domain 

region, calculated from NCS-averaged and density modified molecular replacement 

phases (TM loops were absent from the input model), B-factor sharpened by -20 Å2 

and contoured at 1.0 . The shows the TM1 (K135-L154) and TM2 (L182-N209) 

region of a single CsgG protomer, overlaid on the final refined model. 
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