356 research outputs found

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Differences between urban and rural hedges in England revealed by a citizen science project

    Get PDF
    Background: Hedges are oth ecologically and culturally important and are a distinctive feature of the British landscape. However the overall length of hedges across Great Britain is decreasing. Current challenges in studying hedges relate to the dominance of research on rural, as opposed to urban, hedges, and their variability and geographical breadth. To help address these challenges and to educate the public on the importance of hedge habitats for wildlife, in 2010 the Open Air Laboratories (OPAL) programme coordinated a hedge-focused citizen science survey. Results: Results from 2891 surveys were analysed. Woody plant species differed significantly between urban and rural areas. Beech, Holly, Ivy, Laurel, Privet and Yew were more commonly recorded in urban hedges whereas Blackthorn, Bramble, Dog Rose, Elder and Hawthorn were recorded more often in rural hedges. Urban and rural differences were shown for some groups of invertebrates. Ants, earwigs and shieldbugs were recorded more frequently in urban hedges whereas blowflies, caterpillars, harvestmen, other beetles, spiders and weevils were recorded more frequently in rural hedges. Spiders were the most frequently recorded invertebrate across all surveys. The presence of hard surfaces adjacent to the hedge was influential on hedge structure, number and diversity of plant species, amount of food available for wildlife and invertebrate number and diversity. In urban hedges with one adjacent hard surface, the food available for wildlife was significantly reduced and in rural hedges, one adjacent hard surface affected the diversity of invertebrates. Conclusions: This research highlights that urban hedges may be important habitats for wildlife and that hard surfaces may have an impact on both the number and diversity of plant species and the number and diversity of invertebrates. This study demonstrates that citizen science programmes that focus on hedge surveillance can work and have the added benefit of educating the public on the importance of hedgerow habitats

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Get PDF
    Background: Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results: Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as well as DNA confirmed the behaviour of the nucleoid and nucleoid envelope during cell division. Electron microscopy of cryosubstituted cells confirmed deductions from light microscopy concerning nucleoid presence in relation to the stage of budding, and showed that the nucleoid was observed to occur in both mother and bud cells only at later budding stages. It further suggested that nucleoid envelope formed only after the nucleoid was translocated into the bud, since envelopes only appeared in more mature buds, while naked nucleoids occurred in smaller buds. Nucleoid envelope appeared to originate from the intracytoplasmic membranes (ICM) of both mother cell and bud. There was always a connecting passage between mother cell and bud during the budding process until separation of the two cells. The division cycle of the nucleated planctomycete G. obscuriglobus appears to be a complex process in which chromosomal DNA is transported to the daughter cell bud after initial formation of the bud, and this can be performed repeatedly by a single mother cell. Conclusion: The division cycle of the nucleated planctomycete G. obscuriglobus is a complex process in which chromosomal nucleoid DNA is transported to the daughter cell bud after initial formation of a bud without nucleoid. The new bud nucleoid is initially naked and not surrounded by membrane, but eventually acquires a complete nucleoid envelope consisting of two closely apposed membranes as occurs in the mother cell. The membranes of the new nucleoid envelope surrounding the bud nucleoid are derived from intracytoplasmic membranes of both the mother cell and the bud. The cell division of G. obscuriglobus displays some unique features not known in cells of either prokaryotes or eukaryotes

    A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.</p> <p>Results</p> <p>Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.</p> <p>Conclusion</p> <p>The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.</p

    Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients:a feasibility and clinical validity study

    Get PDF
    BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick

    Get PDF
    Persistent topological defects and textures are particularly dramatic consequences of superfluidity. Among the most fascinating examples are the singular vortices arising from the rotational symmetry group SO(3), with surprising topological properties illustrated by Dirac’s famous belt trick. Despite considerable interest, controlled preparation and detailed study of vortex lines with complex internal structure in fully three-dimensional spinor systems remains an outstanding experimental challenge. Here, we propose and implement a reproducible and controllable method for creating and detecting a singular SO(3) line vortex from the decay of a non-singular spin texture in a ferromagnetic spin-1 Bose–Einstein condensate. Our experiment explicitly demonstrates the SO(3) character and the unique spinor properties of the defect. Although the vortex is singular, its core fills with atoms in the topologically distinct polar magnetic phase. The resulting stable, coherent topological interface has analogues in systems ranging from condensed matter to cosmology and string theory
    corecore