34 research outputs found

    New Insights in the Contribution of Voltage-Gated Nav Channels to Rat Aorta Contraction

    Get PDF
    BACKGROUND: Despite increasing evidence for the presence of voltage-gated Na(+) channels (Na(v)) isoforms and measurements of Na(v) channel currents with the patch-clamp technique in arterial myocytes, no information is available to date as to whether or not Na(v) channels play a functional role in arteries. The aim of the present work was to look for a physiological role of Na(v) channels in the control of rat aortic contraction. METHODOLOGY/PRINCIPAL FINDINGS: Na(v) channels were detected in the aortic media by Western blot analysis and double immunofluorescence labeling for Na(v) channels and smooth muscle alpha-actin using specific antibodies. In parallel, using real time RT-PCR, we identified three Na(v) transcripts: Na(v)1.2, Na(v)1.3, and Na(v)1.5. Only the Na(v)1.2 isoform was found in the intact media and in freshly isolated myocytes excluding contamination by other cell types. Using the specific Na(v) channel agonist veratridine and antagonist tetrodotoxin (TTX), we unmasked a contribution of these channels in the response to the depolarizing agent KCl on rat aortic isometric tension recorded from endothelium-denuded aortic rings. Experimental conditions excluded a contribution of Na(v) channels from the perivascular sympathetic nerve terminals. Addition of low concentrations of KCl (2-10 mM), which induced moderate membrane depolarization (e.g., from -55.9+/-1.4 mV to -45.9+/-1.2 mV at 10 mmol/L as measured with microelectrodes), triggered a contraction potentiated by veratridine (100 microM) and blocked by TTX (1 microM). KB-R7943, an inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger, mimicked the effect of TTX and had no additive effect in presence of TTX. CONCLUSIONS/SIGNIFICANCE: These results define a new role for Na(v) channels in arterial physiology, and suggest that the TTX-sensitive Na(v)1.2 isoform, together with the Na(+)/Ca(2+) exchanger, contributes to the contractile response of aortic myocytes at physiological range of membrane depolarization

    Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    Get PDF
    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    K + channels in cultured bovine retinal pericytes: Effects of β-adrenergic stimulation

    No full text
    Retinal pericytes are key cells involved in the regulation of retinal blood flow. The purpose of this work was to identify the K + channel population expressed in cultured bovine retinal pericytes and to determine whether β-adrenergic stimulation alters the activity of these channels. Isolated pericytes were obtained by homogenization and filtration of bovine retina and K + channels were studied with the whole-cell configuration of the patch-clamp technique on 3-5 passaged pericytes. Pericytes expressed an inward current dependent on extracellular K + concentration which was sensitive to micromolar concentrations of barium, a characteristic of an inward-rectifying K + current. Furthermore, two voltage-dependent outward currents were also observed. Their activation and inactivation properties, as well as their respective sensitivity to 4-aminopyridine and iberiotoxin, were indicative of voltage-sensitive and large-conductance calcium-activated K + channels (BK Ca). Isoproterenol and dibutyryl cyclic adenosine monophosphate enhanced the activity of BK Ca without affecting the other potassium currents. In conclusion, bovine retinal pericytes express mainly two outward potassium currents, K v and BK Ca, as well as an inward rectifying K + current, K ir. Physiologic stimuli such as an increase in extracellular potassium concentration or β-adrenergic receptor stimulation enhance the activity of K ir and BK Ca, respectively, suggesting a potential role for these channels in the control of retinal blood flow.link_to_subscribed_fulltex

    3-Morpholinosydnonimine (SIN-1) and K+ channels in smooth muscle cells of the rabbit and guinea pig carotid arteries

    No full text
    Experiments were designed to determine the subtype of K+ channels activated by the nitrovasodilator 3-morpholinosydnonimine (SIN-1) in smooth muscle cells of the rabbit and guinea pig carotid arteries. Membrane potential was recorded in isolated segments with intracellular microelectrode and K+ currents in freshly dissociated smooth muscle cells, with the patch-clamp technique. In the guinea pig carotid artery, SIN-1 caused a glibenclamide-sensitive hyperpolarization. The nitrovasodilator did not affect the whole-cell K+ current, but activated a glibenclamide-sensitive K+ current. In the rabbit carotid artery, SIN-1 induced only an iberiotoxin-sensitive repolarization in phenylephrine-depolarized tissue and in isolated cells, enhanced the activity of an iberiotoxin-sensitive K+ current. These findings demonstrate that the population of K+ channels activated by nitric oxide (NO) is species-dependent and support the conclusion that, in the guinea pig carotid artery, in contrast to the rabbit carotid artery, the release of NO cannot account for the responses attributed to endothelium-derived hyperpolarizing factor (EDHF). Copyright (C) 2000 Elsevier Science B.V.link_to_subscribed_fulltex

    3-Morpholinosydnonimine (SIN-1) and K+ channels in smooth muscle cells of the rabbit and guinea pig carotid arteries

    Get PDF
    Experiments were designed to determine the subtype of K+ channels activated by the nitrovasodilator 3-morpholinosydnonimine (SIN-1) in smooth muscle cells of the rabbit and guinea pig carotid arteries. Membrane potential was recorded in isolated segments with intracellular microelectrode and K+ currents in freshly dissociated smooth muscle cells, with the patch-clamp technique. In the guinea pig carotid artery, SIN-1 caused a glibenclamide-sensitive hyperpolarization. The nitrovasodilator did not affect the whole-cell K+ current, but activated a glibenclamide-sensitive K+ current. In the rabbit carotid artery, SIN-1 induced only an iberiotoxin-sensitive repolarization in phenylephrine-depolarized tissue and in isolated cells, enhanced the activity of an iberiotoxin-sensitive K+ current. These findings demonstrate that the population of K+ channels activated by nitric oxide (NO) is species-dependent and support the conclusion that, in the guinea pig carotid artery, in contrast to the rabbit carotid artery, the release of NO cannot account for the responses attributed to endothelium-derived hyperpolarizing factor (EDHF). Copyright (C) 2000 Elsevier Science B.V.link_to_subscribed_fulltex

    Endothelium-dependent hyperpolarization to acetylcholine in carotid artery of guinea pig: Role of lipoxygenase

    No full text
    This study was designed to determine whether lipoxygenase-dependent metabolites of arachidonic acid are involved in the endothelium-dependent hyperpolarization of the guinea pig carotid artery. The membrane potential of vascular smooth muscle cells was measured with intracellular microelectrodes and potassium channels were studied on freshly isolated cells with the patch-clamp technique. Acetylcholine-induced hyperpolarizations were not affected by arachidonyl trifluoromethyl ketone (AACOCF3), quinacrine (phospholipase A2 inhibitors), or eicosatetraenoic acid (nonspecific inhibitor of lipoxygenase, cytochrome P450, and cyclooxygenase). In contrast, cinnamyl-3,4 dihydroxy-α-cyanocinnamate (CDC) and AA861 (lipoxygenase inhibitors) as well as 1-(6-(17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl)-1H-pyrrole-2,5-dione (U-73122) (phospholipase C inhibitor) produced a significant inhibition of the hyperpolarization. An opener of intermediate conductance calcium-activated potassium channels, 1-ethyl-2-benzamidazolinone (1-EBIO), induced a hyperpolarization that was unaffected by AACOCF3, CDC, AA861, or U-73122 but was inhibited by charybdotoxin. (±)12-hydroxy-eicosatetraenoic acid (12-HETE) and 12(S)-hydroperoxy-eicosatetraenoic acid (12(S)-HpETE) did not induce any significant changes in membrane potential. CDC inhibited the voltage-gated potassium current and increased the large conductance calcium-activated potassium current whereas AA861 inhibited both potassium currents. These results confirm that, in the isolated carotid artery of the guinea pig, stimulation of endothelial muscarinic receptors involves phospholipase C activation and indicate that the activation of phospholipase A2 and the release of lipoxygenase metabolites is unlikely to explain endothelium-dependent hyperpolarization.link_to_subscribed_fulltex
    corecore