356 research outputs found

    Spatial, Temporal, and Human-Induced Variations in Suspended Sediment Concentration in the Surface Waters of the Yangtze Estuary and Adjacent Coastal Areas

    Get PDF
    To delineate temporal and spatial variations in suspended sediment concentration (SSC) in the Yangtze (Changjiang) Estuary and adjacent coastal waters, surface-water samples were taken twice daily from 10 stations over periods ranging from 2 to 12 years (total number of samples \u3e 28,000). Synoptic measurements in 2009 showed an increase in surface SSC from 0.058 g/l in the upper sections of the estuary to similar to 0.6 g/l at the Yangtze River turbidity maximum at the river mouth, decreasing seaward to 0.057 g/l. Annual periodicities reflect variations in the Yangtze discharge, which affect the horizontal distribution and transport of SSC, and seasonal winds, which result in vertical resuspension and mixing. Over the past 10-20 years, annual surface SSC in the lower Yangtze River and the upper estuary has decreased by 55%, due mainly to dam construction in the upper and middle reaches of the river. The 20-30% decrease in mean surface SSC in the lower estuary and adjacent coastal waters over the same period presumably reflects sediment resuspension, in part due to erosion of the subaqueous Yangtze Delta. SSCs in the estuary and adjacent coastal waters are expected to continue to decline as new dams are constructed in the Yangtze basin and as erosion of the subaqueous delta slows in coming decades

    Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam

    Get PDF
    In 5 recent years ( 2000 - 2004), the Changjiang ( Yangtze) River has discharged past Datong (600 km from the river mouth) an average of similar to 250 million tons (mt) of sediment per year, a decrease of more than 40% since the 1950s and 1960s, whereas water discharge at Datong has increased slightly. Water and sediment discharge data from the upper, middle, and lower reaches of the river suggest that the reduction of the Changjiang sediment load has occurred in two phases between 1950 and 2002: following the closure of the Danjiangkou Reservoir on the Hanjiang tributary in1968 and following the installation of numerous dams and water-soil conservation works in the Jialingjijang catchment after1985. As the Three Gorges Dam (TGD) started operating in 2003, the Changjiang entered a third phase of sediment reduction with annual sediment loads at Datong less than 200 mt/yr. Upon completion of the Three Gorges Dam (TGD) in 2009, the sediment load at Datong will decrease to similar to 210 mt/yr for the first 20 years, then will recover to similar to 230 mt/yr during 2030 - 2060, and will reach similar to 310 mt/yr during 2060 - 2110. From the sediment budget and sediment erosion data for the Changjiang subaqueous delta, it can be assumed that the delta will be eroded extensively during the first five decades after TGD operation and then will approach a balance during the next five decades as sediment discharging from TGD again increases

    Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment

    Get PDF
    Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river’s upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records

    Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch

    Get PDF
    Growth in fundamental drivers—energy use, economic productivity and population—can provide quantitative indications of the proposed boundary between the Holocene Epoch and the Anthropocene. Human energy expenditure in the Anthropocene, ~22 zetajoules (ZJ), exceeds that across the prior 11,700 years of the Holocene (~14.6 ZJ), largely through combustion of fossil fuels. The global warming effect during the Anthropocene is more than an order of magnitude greater still. Global human population, their productivity and energy consumption, and most changes impacting the global environment, are highly correlated. This extraordinary outburst of consumption and productivity demonstrates how the Earth System has departed from its Holocene state since ~1950 CE, forcing abrupt physical, chemical and biological changes to the Earth’s stratigraphic record that can be used to justify the proposal for naming a new epoch—the Anthropocene

    Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic–carbonate sediments: Mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran

    Get PDF
    The Upper Jurassic Mozduran Formation with a thickness of 420 m at the type locality is the most important gas-bearing reservoir in NE Iran. It is mainly composed of limestone, dolostone with shale and gypsum interbeds that grade into coarser siliciclastics in the easternmost part of the basin. Eight stratigraphic sections were studied in detail in south of the Agh-Darband area. These analyses suggest that four carbonate facies associations and three siliciclastic lithofacies were deposited in shallow marine to shoreline environments, respectively. Cementation, compaction, dissolution, micritization, neomorphism, hematitization, dolomitization and fracturing are diagenetic processes that affected these sediments.Stable isotope variations of δ18O and δ13C in carbonate rocks show two different trends. High depletion of δ18O and low variation of δ13C probably reflect increasing temperatures during burial diagenesis, while the higher depletion in carbon isotope values with low variations in oxygen isotopes are related to fresh water flushing during meteoric diagenesis. Negative values of carbon isotopes may have also resulted from organic matter alteration during penetration of meteoric water. Fe and Mn enrichment with depletion of δ18O also supports the contention that alteration associated with higher depletion in carbon isotope values with low variations in oxygen isotopes took place during meteoric diagenesis. The presence of bright luminescence indicates redox conditions during precipitation of calcite cement

    An Integrated Approach Providing Scientific and Policy-Relevant Insights for South-West Bangladesh

    Get PDF
    Bangladesh is identified as an impact hotspot for sea-level rise in multiple studies. However, a range of other factors must be considered including catchment management, socio-economic development and governance quality, as well as delta plain biophysical processes. Taking an integrated assessment approach highlights that to 2050 future changes are more sensitive to human choice/policy intervention than climate change, ecosystem services diminish as a proportion of the economy with time, continuing historic trends and significant poverty persists for some households. Hence under favourable policy decisions, development could transform Bangladesh by 2050 making it less vulnerable to longer-term climate change and subsidence. Beyond 2050, the threats of climate change are much larger, requiring strategic adaptation responses and policy changes that must be initiated now

    Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic

    Get PDF
    Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N - 27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50′ - 19°45′S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km2. Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m−2 yr−1, with a total production rate of 0.025 Gt yr−1, comparable to those of the world's largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades

    Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity

    Get PDF
    © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems

    Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Get PDF
    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event
    corecore