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Abstract 

The Upper Jurassic Mozduran Formation with thickness 420 meters at the type locality is the most important 

gas-bearing reservoir in NE Iran. It is mainly composed of limestone, dolostone with shale and gypsum 

interbeds that grade into coarser siliciclastics in the easternmost part of the basin. Eight stratigraphic sections 

were studied in detail in south of the Agh-Darband area. These analyses suggest that four carbonate facies 

associations and three siliciclastic lithofacies were deposited in shallow marine to shoreline environments, 

respectively. Cementation, compaction, dissolution, micritization, neomorphism, hematitization, dolomitization 

and fracturing are diagenetic processes that affected these sediments. Stable isotope variations of δ18O and δ13C 

in carbonate rocks show two different trends. High depletion of δ18O and low variation of δ13C probably reflects 

increasing temperatures during burial diagenesis, while the higher depletion in carbon isotope values with low 

variations in oxygen isotopes are related to fresh water flushing during meteoric diagenesis. Negative values of 

carbon isotopes may have also resulted from organic matter alteration during penetration of meteoric water. Fe 

and Mn enrichment with depletion of δ18O also supports the contention that alteration associated with higher 

depletion in carbon isotope values with low variations in oxygen isotopes took place during meteoric diagenesis. 

The presence of bright luminescence indicates redox conditions during precipitation of calcite cement.  
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Introduction  

The Kopet-Dagh petroliferous basin of northeast Iran and southwest Turkmenistan formed after closure of the 

Hercynian Ocean following the Middle Triassic Orogeny (Berberian and King 1981; Ruttner 1993; Alavi et al. 

1997). More than 7000 meters of carbonate, siliciclastic and evaporite sediments were deposited from Jurassic 

through Miocene time in the eastern parts of the basin (Afshar-Harb 1979, 1994) that formed five major 

transgressive-regressive sequences (Moussavi-Harami and Brenner 1992). The major reservoir in the giant 

Khangiran gas field in the Kopet-Dagh basin is a highly porous and permeable dolomitic interval of the Upper 

Jurassic (Oxfordian–Kimmeridgian) Mozduran Formation. This formation at type locality is mainly composed 

of limestone, dolostone and lesser amounts of shale interbeds; ranging in thickness from 420 to 1380 meters at 

the type section and Khangiran well #31 respectively (Afshar-Harb 1994). These carbonate rocks grade laterally 

to coarser siliciclastic and evaporite sediments in the Agh-Darband area in the easternmost parts of the basin 

(Moussavi–Harami 1989). The Mozduran Formation disconformably overlies marine shale of the Kashafrud 

Formation and is underlain by red siliciclastic rocks of the Shurijeh Formation that have been deposited by 

fluvial depositional systems.  

The objectives of this study are recognition of diagenetic processes and interpretation of their paragenetic 

sequences operated on the Mozduran Formation during post Oxfordian–Kimmeridgian time.  

Methods and material studied 

In this study eight stratigraphic sections from the Mozduran Formation (ranging in thickness from 89 to 509 

meters) south of the Agh-Darband area (Fig.1) were measured. 750 thin sections were etched with dilute HCl 

and stained with Alizarin Red and Potassium Ferricyanide solution based on Dickson (1966) for differentiation 

of calcites and dolomites (ferroan and non-ferroan) and 120 washed samples were studied by polarized and 

binocular microscopes respectively. In addition, 150 polished thin sections were studied with a 

cathodoluminescence microscope (Marshall 1988; Tucker 1988, Frank et al. 1995), using a Technosyn Cold CL 

(Model 8200 MK3) at 12 KV and 195 µA with an automatic camera. 

Thirty limestone samples were analyzed for carbon and oxygen isotopes as well as trace elements. A 

microscope-mounted dental drill was used to extract calcite powder from polished specimens. About 0.2 mg of 

each sample was reacted with anhydrous phosphoric acid in individual reaction vessels in a vacuum at 72°C. 

The CO2 extracted from each sample was analyzed by isotope ratio mass spectrometry at the Nelson Laboratory 

at the University of Iowa. Both δ18O and δ13C values are reported relative to PDB. The same sample powders 
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were also analyzed by Atomic Absorption Spectrophotometer to determine their Ca, Mg, Sr, Na and Fe content 

at the geochemistry laboratory at the Ferdowsi University of Mashhad. 

 

 

Fig.1 

 

Depositional environments 

The Upper Jurassic Mozduran Formation in the study area is composed of both carbonate and siliciclastic rocks. 

Based on petrographical studies, four carbonate facies associations (A to D), three major siliciclastic (G and F) 

and one evaporate lithofacies (E) have been identified (Mahboubi et al. 2006) (Table 1 and Fig. 2). 

Facies association A consists of echinoderm brachiopod packstone and brachiopod red algal  grainstone, 

association B is composed of ooid bearing pelecypod grainstone, ooid grainstone, ooid bioclast intraclast 

grainstone, association C is also mainly composed of ooid-bioclast packstone, green algal wackestone, coral 

fragments wackestone,  lime mudstone, peloidal packstone and peloidal grainstone and finally association D 

consists of dolomudstone and lime mudstone. Siliciclastic lithofacies consist of sandstones (F) including 

quartzarenite, sublitharenite, litharenite and fossiliferous litharenite, gypsiferous shales (G). 

 

Table 1 

 

The presence of many stenohaline organisms, such as echinoderms and brachiopods of medium-to-fine sand-

size in association A indicates possible open marine conditions below the fair-weather wave base (e.g. Sanders 

and Hofling 2000; Flugel 2004; Schneider et al. 2004). Seemingly, oolitic cross-bedded grainstones of 

association B, were deposited in higher energy environments, such as barriers (e.g. Martin-Chivelet et al. 1995; 

Alsharhan and Kendall 2003; Coffey and Read 2004). Presence of pelloids within the mud-supported and 

medium-to-thin-bedded packstones indicate a low energy lagoonal environment for association C (e.g. Burchet 

et al. 1990; Alsharhan and Kendall 2003; Adachi et al. 2004). Thin-bedded dolomudstone and lime mudstone 

with gypsum interbeds suggest deposition of association D in a supra-tidal environment (e.g. Yechieli and Wood 

2003; Alsharhan and Kendall 2003; Fortuin and Krijgman 2003; Warren 2006). 

Mature-to-super mature litharenite to sublitharenite with trough and herringbone planar cross-lamination and 

cross-bedding as well as coarsening and thickening upward cycles of sandstones to pebbly sandstone in 
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easternmost part (Figs. 2 and 3) show that these sediments may have been deposited in a high energy tidal 

dominated shoreline (based on Miall 1997; Tamura and Masuda 2003 and Holz 2003 in other places). Fine 

grained mudrocks with evaporate minerals also show low-energy restricted conditions.  

Based on the combination of field observations, laboratory considerations, as well as vertical and lateral facies 

changes in the studied area, it is interpreted that the carbonate facies were deposited on a homoclinal carbonate 

ramp in open marine, barrier, lagoon and tidal flat sub environments, whereas siliciclastic lithofacies were 

deposited during times of high siliciclastic influx in tidal environments (Fig. 3). 

 

Fig. 2 

Fig. 3 

 

 

Diagenetic events 

Diagenetic processes that affected these various rock types during short as well as long periods after deposition 

will be explained and interpreted separately for carbonate and coarser siliciclastics.  

Diagenetic features in limestones      

Petrographic studies showed that several diagenetic processes including micritization, compaction, cementation, 

neomorphism, dissolution, dolomitization, fracturing and vein formation have affected limestones of the 

Mozduran Formation.  

Micritization: Micritization is the first diagenetic process that occurs at the sediment-water interface (Adams 

and Mackenzie 1998) under low energy conditions (Tucker and Wright 1990; Flugel 2004). This process is 

generated by repetition of microorganism activities by bacteria, algae and fungi on carbonate grain surfaces 

(Carols 2002). Micritization in studied samples affected many skeletal grains such as plecypod and brachiopod 

as well as non-skeletal particles such as ooid and intraclasts (Fig. 4A). It formed thin micrite envelopes with 

around some grains and in others this process led to destruction of most parts with patches of micrite present. 

Cementation: Cement fabrics formed in various diagenetic environments are: 

a) Isopachous fringing cement: This formed as the first generation cement around ooids and bioclasts in 

grainstones. It shows fibrous and bladed shapes and formed on the grain rims or micrite envelops (Fig. 

4B.a). Isopachous cements reflected high saturation state of CaCO3 and low sedimentation rate during 

its formation (Ehrenberg et al. 2002).  
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b) Blocky cement: This formed in mud-free grain-supported lithofacies comprising single crystals with 

0.1 to 0.25 mm in diameter. This cement is the second generation cement which generally occupies 

remains of pore space after isopachous fringing cements (Fig. 4C). Blocky cements have a blue color 

with potassium ferricyanide solution that shows presence of Fe. This cement has also alternatively 

dark, bright and dull luminescence zones under CL microscope indicating the presence of various 

amounts of Fe and Mn content during precipitation (Fig. 6A and B).   

c)  Mosaic cement: This is less common cement and formed as subhedral crystals with average size 

ranging from 0.05 to 0.1 mm. that filled pores between skeletal and non-skeletal grains (Fig. 4B.b).  

d) Poikilotopic cement: This cement type consists of a large crystal that contains several smaller bioclast 

grains (Fig. 4D). It is not common in studied samples and it may have been deposited from 

supersaturated pore fluids of calcium carbonate with low nucleation rate of calcite crystals and low 

growth rate. This condition can be present during burial diagenesis (Flugel 2004).  

e) Syntaxial overgrowth rim cement: This cement is formed in bioclastic grainstones around the 

echinoderm fragments. It is generally clear and lacking inclusions (Fig.  4E). 

Compaction: Compaction affected limestones of the Mozduran Formation after deposition and led to physical 

and chemical rearrangements and changes in the sediments. Close packing, close grain contacts and decreasing 

of primary interparticle porosity in grain supported-limestones support physical compaction. Evidently, physical 

compaction may have more affected shale interbeds within the limestone units and led to dewatering and 

decreasing of thickness. As overburden increased and sediments buried deeply, chemical compaction started and 

changed some of the sediment characteristics (Fig. 4F and G). Evidence includes closer packing, increasing 

suture and concave-convex contacts, fracturing ooid and some shells such as brachiopods, bryozoans and 

echinoderms, pressure dissolution at grain contacts and the formation of stylolites (e.g. Vincent et al. 2007). 

 

 

Fig. 4 

  

Dissolution: This process has affected most of the carbonate rocks in the study area. Penetration of 

undersaturated water led to dissolution of grain and matrix in many limestones. Generation of secondary 

porosity was the most important result of this event. This type of porosity in many samples is non-fabric 

selective, although selective dissolution has also occurred (Fig. 5A). This later type was mainly formed during 
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exposure of limestones. Oomoldic porosity is another manifestation of dissolution that is mainly seen in ooid 

grainstones. In addition, some meta-stable and unstable grains such as aragonitic bioclasts were dissolved during 

deep burial and chemical compaction. This evidence is well seen in close packed grain-supported facies.         

Neomorphism: Neomorphism occurs in presence of water during dissolution and precipitation (Bathurst 1975; 

Tucker 1993). Two types of neomorphism are observed in studied samples. a) Transfer and change of lime mud 

to coarser crystals in mud-supported facies and b) filling of some shells with sparry calcite such as pelecypods 

and gastropods that formed from metastable aragonite mineralogy. The last type is mainly seen in bioclastic 

grainstone and packstone in the studied samples (Fig. 5B). 

Dolomitization: One of the most important processes that affected many limestones in the study area is 

dolomitization. Based on petrographic evidence (e.g., Sibely and Greeg classification 1987), dolomites in the 

study area have been divided into three types: Type one (D1) is a fine crystal with anhedral to subhedral shape 

and the size is less than 100 micron (Fig. 5F). These dolomites are associated with evaporite minerals such as 

gypsum. Type two (D2) is medium crystal size (100 to 300 micron) and subhedral to planar euhedral. This type 

of dolomite is mostly observed as a replacement in limestone and cement within sandstones. Replacement is 

often observed as fabric-destructive in some carbonate grains of grainstones such as echinoderms, pelecypods, 

intraclasts and rarely ooids (Fig. 5G). Dolomites type three (D3) have coarse crystal size (more than 300 micron) 

and are planar euhedral to subhedral. These crystals mainly fill pores and fractures (Fig. 5H). These dolomites 

have cloudy centers and clear rims. Kyser et al. (2002) interpreted that these dolomites can be generated from 

different fluids. Different crystal size in three types of dolomites (D1, D2 and D3) can be accounted for by the 

relationship between nucleation and kinetic growth as well as relative timing. In fine crystalline dolomites, 

nucleation rate is higher than crystal growth rate and in coarse crystalline types crystal growth rate is higher than 

nucleation rate. Both nucleation and crystal growth rates increase with temperature (Sibely and Greeg 1987).   

Fractures and Veins: Veins in the studied carbonate rocks are abundant. These veins have been filled with 

coarse crystalline sparry calcite (Fig. 5C). Cathodoluminscence study indicates that several dark-bright 

luminescence zones in these samples can be related to fluctuation of chemical composition of fluids during 

calcite precipitation (Fig. 6B) (Marshall 1988; Fouke et al. 2002).  
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Diagenetic features in sandstones   

Sandstone affected by compaction, cementation, dissolution, dolomitization, and fracturing and vein formation 

during deposition and post deposition time.   

Compaction: compaction of sandstones led to physical change in grain packing and orientation. Sediment 

loading and tectonic subsidence from the Jurassic through Neogene (Moussavi-Harami and Brenner 1992) and 

later orogenic events in this basin were the main causes of compaction that affected the sandstones. Early 

cementation was one of the most important factors that helped reduce compaction effects in sandstones (e.g. 

Kim and Lee 2004). High cement/grain ratio and loose packing are the common features in some sandstone that 

indicate that cementation operated during the early stages of diagenesis. In some samples with no early cement, 

closer packing, high grain/cement ratio, high linear, sutured and concave-convex contacts are the most common 

evidence for operation of compaction at the early stage before the effect of cementation in the studied samples.  

Cementation: Carbonate (calcite and dolomite) and silica are the most common cement types in these 

sandstones (Fig. 5D and E). Calcite cement is mainly fine crystals with granular fabric but in some samples it is 

in blocky form. Petrographic studies suggest that calcite may have had two sources. First, pressure dissolution of 

bioclastic grains between terrigenous particles during burial compaction (mesogenesis) and secondly comes 

from fluid derived during burial compaction of limestone interbeds. Silica cement is less common than 

carbonate and is mostly seen as an overgrowth around the quartz grains. This implies that silica cement 

precipitated in favorable sites where enough pore space was available. Sediments may retain this type of pore 

space during early stages of burial (Ahmad and Bhat 2006). Silica could have been derived from different 

sources. In studied samples, dissolution of quartz grains at their boundaries, feldspar alteration and diagenesis of 

clay minerals, saturated fluids from silica, are the most important sources for quartz cementation (e.g. Ahmad 

and Bhat 2006)  

Dissolution: Dissolution of carbonate cements is one of the most important factors that increased secondary 

porosity in the sandstones studied. This process may have taken place during the late burial diagenetic stage 

when the acidic waters formed from carboxylation generated from organic matter in shales moved into these 

coarser-grain sediments (e.g. Ahmad and Bhat 2006; Machent et al. 2007).  

Dolomitization: Dolomitization is abundant in many types of sandstone, and based on the above classification 

(described in limestone diagenesis) they are mostly of D2 and D3 types with small amounts of D1 type.  

Hematitization: Hematite is present in many samples as cement, especially around grains. The source of iron 

could be from diagenesis of clay minerals, or may have come into the depositional site by meteoric waters. 
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Hematite shows evidence for dominantly oxidizing conditions during deposition of sandstones (Weible and Friis 

2004). Therefore, we believe that the main source of iron was from meteoric water. Also the presence of opaque 

mineral grains including limonite and hematite suggests derivation from metamorphic and igneous rocks (e.g. 

Ahmad and Bhat 2006).  

 

Fig. 5 

 

 

 

Fig. 6 

 

Stable Isotope geochemistry 

Results: To establish a better understanding of diagenetic processes that operated after deposition of the Upper 

Jurassic limestones in the study area, 30 samples were analyzed for carbon and oxygen isotopes. These analyses 

have been done on grains such as ooids, brachiopods as well as cement and lime mud (Table 2).  

 

Table 2 

 

 

Discussion: Cross plots of carbon versus oxygen isotope values have been used by many researchers for 

geochemical interpretation (e.g. Hudson 1977; Anderson and Arthur 1983; Lohmann 1988; Morse and 

Mackenzie 1990; Nelson and Smith 1996; Rahimpour-Bonab et al. 1997; Macaulay et al. 2001; Mahboubi et al. 

2004, 2006; Adabi et al. 2006). Data cross plots of the Upper Jurassic limestones (Fig. 7) show two different 

trends. First, a trend with low changes in δ13C values and higher variation in δ18O, and second a higher variation 

in δ13C values and low change in δ18O values. These variations are obviously related to abundance of fluid types 

during sediment deposition. In general, open systems and high water-rock ratio lead to loss of primary isotopic 

values, while closed systems and low water-rock ratios favor presentation or total retention of original isotopic 

composition (Meyers 1989). The first trend with high depletion of δ18O probably reflects increasing temperature 

during burial diagenesis which is similar to what Choquette and James (1987) and Nelson and Smith (1996) 

have described. Low variation in δ13C values could have resulted from original inorganic carbon derived as well 
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as less differentiation between 13C/12C ratios than 18O/16O ratios with increasing temperature. The second trend 

that shows higher depletion in carbon isotope value is relatively similar to the inverted J trend of Lohmann 

(1988) and is usually supported by flushing of fresh water during meteoric diagenesis. Negative values of 

carbon isotopes could have resulted from organic matter alteration during penetration of meteoric water. The 

Lower Cretaceous unconformity could have also allowed meteoric water recharges in the Lower and Upper 

Jurassic formations and increased the effect of meteoric water on these deposits (e.g. Vincent et al. 2007).  

 

Fig. 7 

 

Comparison of these data with others (Milliman and Muller 1977, James and Choquette 1983 and Adabi and 

Rao 1991) (Fig. 7) shows greater depletion of oxygen isotope values due to intensive diagenetic effects. In 

addition, comparison of these data with previous isotopic data from the Mozduran Formation to the north in the 

Kopet-Dagh Basin (Adabi and Rao 1991) shows the same results. This trend shows that important effects of 

meteoric and burial diagenesis on the oxygen isotopic composition causing depleted. However, it is also 

possible that this effect was caused by different burial depth of these deposits. 

Paleotemperature 

Shackleton and Kennet (1975), Friedman and O'Neil (1977) and Anderson and Arthur (1983) proposed different 

formulae for calculation of ambient water temperature. However, in this study the Anderson and Arthur (1983) 

equation was used for calculation of paleotemperature as follows: 

 

T = 16.0 – 4.14 (δc - δw) + 0.13 (δc - δw) 2 

 

Where T is temperature, δc is the oxygen isotope ratio for calcite relative to PDB and δw is the oxygen isotope 

ratio for water relative to SMOW. 

By using +1.50 per mil for δ18O for the least altered calcite (lime mud) in all studied samples and -1.2 per mil 

for the oxygen isotope value for the Upper Jurassic waters (Marshall and Ashton 1980; Price and Sellwood 

1994), we calculated 28° C for the ambient water temperature during deposition of the Upper Jurassic limestone 

of Mozduran Formation in the study area. It showed that the study area during the Late Jurassic time was 

probably located in a tropical region. This interpretation can be supported by present of ooid, pelloid, coral 

fragments, evaporite, red and green algae and is similar to observations made by Adabi and Rao (1991).    
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Elemental analysis  

Results: Elemental analysis (Ca, Mg, Fe, Mn, Sr and Na) of the Mozduran Formation limestones are shown in 

Table 3. These data show that insoluble residue in samples is less than 10% and Ca wt% in calcitic grains ranges 

from 30 to 40. Mg wt% is also between 0.2 to 1.5 and shows low Mg calcite mineralogy. Sr values in ooids, 

lime mud, cement and brachiopods range from 110 to 280, 130 to 430, 220 to 410 and 140 to 480 ppm, 

respectively. Mn in ooids ranges from 360 to 850 ppm, in lime mud from 530 to 2170 ppm, in cement from 150 

to 8700 and in brachiopods from 350 to 910 ppm. Fe and Na values are greater than Mn and Sr concentrations. 

Fe values in ooids, lime mud, cement and brachiopods range from 4360 to 12880, 950 to 7940, 4890 to 11090 

and 3090 to 10360 ppm, respectively. Na in ooids varies from 8180 to 18790, in lime mud from 2600 to 6260, 

in cement from 2770 to 17140 and in brachiopods from 4290 to 31130 ppm. 

Average values of trace elements in the studied limestones, without consideration of grain types, are 7946 ppm 

for Na, 339 ppm for Sr, 6606 ppm for Fe and 1131 ppm for Mn. 

 

 

Table 3 

 

Discussion: Cross plots of trace elements (Fe, Mn, Na and Sr) versus carbon and oxygen isotopes are shown in 

figure 8 (A to H). Strontium concentration is much less than recent carbonate values (Milliman 1974). It can be 

related to meteoric diagenetic effects as well as original mineralogy (low Mg calcite) of carbonates. Original 

mineralogy can be interpreted from preservation of internal fabric of ooids in the studied samples. Worldwide 

sea level change of Vail et al. (1991) also correlated to this change of Sr values in this deposit. Na values are 

close to values in recent carbonates (Milliman 1974). Sr and Na concentration in diagenetic calcites can be 

controlled by the partition coefficient (less than 1) and low concentration in meteoric waters.  

Mn and Fe cross plot (Fig. 8) showed a positive correlation that revealed meteoric diagenetic conditions 

(Winefield et al. 1994). Increasing concentration of these two elements can be related to the effect of freshwater 

with higher Mn and Fe values as well as their Partition Coefficient (approximately 15) (e.g. Pingitor et al. 1988, 

Brand and Veizer 1980). Redox potential also controlled Fe and Mn values in the study area. If the amount of 

Mn and the Mn/Fe ratio are enough (see Frank et al. 1982) in anoxic condition, then this can lead to 

luminescence in calcite cements and veins. Amini and Rao (1998) believe siliciclastic influx can increase the 

Mn and Fe values in shallow marine carbonate environments. In the study samples these are dull and bright 
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zones under CL, indicating fluctuation of Mn and Fe elements. This could have been caused by the flow of 

fluids with different compositions and different redox conditions during the cement precipitation. 

 

Fig. 8   

 

 

Paragenetic sequence   

The sequence of diagenetic events in a carbonate system depends on factors such as the sediment itself, grain 

size and texture, mineralogy, nature of pore-fluid and climate (Tucker and Wright 1990; Tucker 1993; Flugel 

2004). Based on petrographic characteristics and geochemical results, diagenetic processes have operated in 

three different environments (Figs.9 and 10). Early diagenetic stage processes operated in marine and meteoric 

phreatic environments. Marine diagenetic environments are recognized by first generation nonferroan 

isopachous cements, micritization and physical compaction. In meteoric phreatic environments, aragonite 

particles are dissolved and interparticle porosity is generated. In addition, neomorphism and formation of non- 

ferron, anhedral to subhedral, medium-size dolomite have taken place. Burial diagenetic stage processes 

affected the Mozduran Formation in deeper and higher temperature area relative to the marine diagenetic stage. 

At this burial stage, diagenetic processes included cementation (blocky, granular, drusy, poikilotopic), 

increasing Fe and Mn contents in cements during reducing conditions, physical and chemical compaction 

(stylolites, increasing grain contacts), dissolution, fracturing and replacement of subhedral to euhedral 

dolomites. Dolomitization is an important process in this stage, which affected grainstones, void space and 

veins. Based on the absence of baroque dolomites and sulfide mineralization, burial depth may have not been 

very much (e.g. Budd 1997; Warren 2006). Relatively coarse and euhedral dolomite crystals in sandstones may 

have been formed at this stage. 

Mechanical and chemical compaction as well as cementation is the dominant porosity modifying agents. 

Sediment texture and the relative compactability of grains such as pelloid and algal debris may affect the early 

mechanical compaction history of carbonate sediments of Mozduran Formation. Early cementation and 

pervasive dolomitization tend to retard the onset and efficiency of chemical compaction. Marine and meteoric 

processes mostly occur in early stages and shallow burial but physical and especially chemical compaction, 

fracturing, blocky cementation occur in late stages and deeper part of burial (e.g. Benoit et al 2007). 

Dolomitization and neomorphism occur in different depth of burial. 
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 Late diagenetic processes affected these sediments after uplifting and formation of fractures by the late Alpain 

orogenies when the basin was folded and faulted in Miocene time. Some fractures have been filled with sparry 

calcite. Dissolution and fracturing are the most important processes that helped to create secondary porosity in 

this interval. Dissolution took place when these rocks were flushed by low-ph meteoric waters, while fracturing 

is occurred during the late burial diagenetic environment as well as uplifting.  

Based on geochemical studies, cements precipitated during the late diagenesis have high amounts of Fe and Mn 

and less Sr and Na. Stable isotopes also change in different types of cement that are due to different stages of 

diagenesis. For example, the value of δ18O decreases from early-to-late diagenetic cements as depth of burial 

increases. Measured temperature from the lightest oxygen isotope value is about 50° C and based on Kopet- 

Dagh Basin burial history (Moussavi-Harami and Brenner, 1992), this temperature can be correlated with burial 

depth about 1300m for Mozduran Formation during Late Jurassic to Early Cretaceous time.  Maximum burial 

depth of Mozduran Formation is calculated about 4000m (Moussavi-Harami and Brenner, 1992). In summary, 

the study area deposits show different stages of diagenesis in marine, meteoric and burial environments. Most of 

these processes occurred in burial and meteoric environments. 

    

   

 

Fig. 9 

 

Fig. 10 

 

Conclusions 

The Mozduran Formation in the Kopet-Dagh basin is mainly composed of carbonate and gradually changes to 

siliciclastic facies in the easternmost parts of the basin. These sediments were deposited in shallow marine and 

shoreline environments. Various diagenetic processes affected carbonate and siliciclastic sediments of the 

Mozduran Formation. These processes include cementation, micritization, dissolution, silicification, 

neomorphism, compaction (physical and chemical), dolomitization, hematitization and fracturing. These 

processes occurred in marine, meteoric and burial environments. Temperature of the ambient water during 

deposition of the Upper Jurassic in the study area was about 28°C, therefore these sediments were probably 

deposited under tropical climatic conditions that supported by present of chlorozoan assemblages. Maximum 
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temperature estimated is about 50° C that can be correlated with burial depth about 1300m for Mozduran 

Formation. Dissolution and fracturing are the important diagenetic processes to create secondary porosity in this 

interval. We hope, these data can be used in evaluation of reservoir characterization in other parts of this basin 

as well as similar basins in other parts of the world.  
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Figure captions 

 

Figure 1: Location map of the study area. Letters show the location of measured stratigraphic sections. North 

Shurab (A),  Kal-e-Shahmohammad 2 (B), Shurab (C),  Kal-e-ShahMohammad 1 (D), Kol-e-Malekabad (E), 

Kal-e-Karab (F), Derazab (G), Karizak (H). 

Figure 2: Microfacies correlation of study area. The above box shows locality of measured stratigraphic sections 

at Mozduran Formation outcrops. 

Figure 3: Conceptual depositional model of Upper Jurassic Mozduran Formation showing spatial relationship of 

facies associations A- G (After Mahboubi et al., 2006)                                .                        

Figure 4: Photomicrographs show the effect of diagenetic processes in the studied samples. (A) micritization 

that affected echinoderm fragment margin. (B) Ispachous (a) and granular calcite cements (b) in grainstone. 

Fracture filling in carbonate grains with sparry calcite cement. (C) Coarse crystalline blocky calcite. (D) 

Poikilotopic cement in ooid grainstone. (E) Syntaxial cement around echinoderm fragments. (F) stylolite in 

grainstone. (G) Compaction that resulted from overburden pressure. 

Figure 5: Photomicrographs of diagenetic processes: (A) Dissolution in limestones. (B) Aggradational 

neomorphism in mudstones. (C) Fractures in mudstones have been filled by calcite cement. (D) Overgrowth 

silica cement around quartz grain. (E) Calcite (a) and dolomite cements (b) in sandstones. (F) Fine crystalline 

dolomite (D1 type). (G) Medium crystalline dolomites replacing echinoderm fragments (D2 type). (H) Pore 

filling coarse crystalline dolomites (D3 type).   

Figure 6: Photomicrographs showing fracture filling with calcite crystals. (A) Vein filled by coarse crystalline 

calcite (PPL). (B) The same vein as A under CL. Dull and bright zoning indicates differences in composition of 

water during precipitation of calcite cement. (C) Pore and fracture filling coarse crystalline dolomites (PPL). 

Cloudy center and bright margin is very obvious in these dolomites. (D) Dolomite crystals under CL. Different 

luminescence in dolomites show that they formed in different conditions. For example red luminescence in 

dolomite crystals shows burial and redox conditions during replacement.  

Figure 7: Comparison between δ18O and δ13C value of study samples with Recent whole sediment in warm 

shallow marine water and Recent warm shallow marine water sediments and skeletons. This trend is similar to 

inverted J- trend of Lohmann (1988). It indicates influence of meteoric diagenesis. 
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 Figure 8: Cross-plots of δ18O versus Fe, Mn, Na and Sr in carbonate samples of the Mozduran Formation in the 

study area (A, B, C and D). High value of Fe and low value of δ18O and Sr indicating influence of meteoric 

diagenesis. Cross-plots of δ13C versus Fe, Mn, Na and Sr in carbonate samples of the study area (E, F, G and H). 

High value of Fe and low value of δ13C and Sr indicating influence of meteoric diagenesis. High values of Na 

indicating high salinity and evaporation during the formation of carbonates.      

Figure 9:  Paragenetic sequence of the Mozduran Formation limestones in the study area. 

Figure 10:  Paragenetic sequence of the Mozduran Formation siliciclastics in the study area. 

 

 

 

 

 

 

 

 

 

 

 

Tables 

 

Table1. Summary of lithofacies types Mozduran Formation in the study area 

Table2. Results of carbon and oxygen stable isotopes analysis for the Mozduran Formation limestones. 

Table3. Results of elemental analysis for limestone samples. 
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Microfacies 
types Microfacies name Skeletal components Non skeletal components Interpretation 

A1 Bioclastic packstone Brachiopod, Echinoderm, 
Bivalve, Bryozoan Intraclast Open marine 

A2 Bioclastic grainstone Brachiopod, Bivalves Ooid, Intraclast Open marine 

B1 
Sandy bioclast grainstone 

bearing ooid 

Brachiopod, Echinoderm, 
Bivalve, Gastropod, 

Green algae 
Ooid, Intraclast Barrier 

B2 Sandy bioclast ooid grainstone Brachiopod, Echinoderm, 
Bivalve Ooid, Intraclast Barrier 

B3 Ooid bioclast grainstone Bivalve Ooid, Intraclast Barrier 

B4 Intraclast grainstone Echinoderm, Bryozoan Ooid, Intraclast Barrier 

B5 Intraclast ooid grainstone Bivalve, Echinoderm, 
Gastropod Ooid, Intraclast Barrier 

B6 Bioclast ooid grainstone 
Bivalve, Echinoderm, 

Gastropod, Brachiopod, 
Bryozoan, Green algae 

Ooid, Intraclast, Peloid Barrier 

B7 Sandy ooid grainstone Bivalve, Gastropod, 
Brachiopod, Milliolid Ooid, Intraclast, Peloid Barrier 

C1 ooid packstone Bivalve, Gastropod, 
Milliolid Ooid, Peloid Lagoon 

C2 Sandy ooid bioclast packstone Bivalve, Gastropod, 
Milliolid Ooid,  Peloid, Intraclast Lagoon 

C3 Ostracoda mudstone Ostracoda Peloid Lagoon 

C4 Peloidal packstone - Peloid Lagoon 

D1 Mudstone - - Tidal flat 

D2 Dolostone - - Tidal flat 

G Shale - - Tidal En. 

F Sandstone - - 
Tidal 

dominated 
shoreline 

E Gypsum - - Salina 
 
 
Table 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Sample No. 
 

δ 13C ‰ PDB 
 

δ 18O ‰ PDB 
 

13(ooid) 

49A(ooid) 

65(ooid) 

0.65 

-1.809 

0.36 

-5.51 

-10.25 

-9.2 

1B-A(ooid) -0.48 -10.76 

20A(ooid) 1.00 -6.98 

66(micrite) 0.47 -6.45 

97(micrite) -0.81 -8.24 

100(micrite) 2.41 +1.50 

105(micrite) 0.72 -4.11 

106(micrite) 2.56 -2.52 

25B(micrite) -0.83 -6.46 

33B(micrite) -5.04 -9.32 

36B(micrite) -1.61 -11.86 

43B(micrite) -1.16 -4.55 

11(cement) 0.90 -5.90 

20B(cement) 0.98 -7.13 

23(cement) -0.15 -6.83 

81(cement) 0.27 -7.84 

73B(cement) 0.23 -9.34 

26(brachiopoda) 1.97 -3.94 

30(brachiopoda) 1.64 -2.04 

41(brachiopoda) 1.51 -3.99 

45(brachiopoda) 1.42 -2.16 

54(brachiopoda) -0.11 -7.91 

73A(brachiopoda) 2.51 -3.17 

112(brachiopoda) -2.40 -7.64 

119(brachiopoda) -0.08 -8.47 

8B-A(brachiopoda) 1.86 -5.84 

 
 
 
Table 2 
 
 
 
 
 



Sample No. Ca (wt%) Mg (wt%) Na (ppm) Sr (ppm) Fe (ppm)  Mn (ppm)         Sr/Na     

13 (ooid) 36.45 0.94 8470 270 9070 850 0.03  

20 (ooid) 36.22 0.50 10410 110 8000 810 0.10       

49 (ooid) 37.47 0.34 8180 280 8930 720 0.03  

5B (ooid) 37.55 0.33 18790 230 4840 880 0.10  

6B (ooid) 36.59 0.42 10500 110 4360 810 0.03  

97 (micrite) 36.57 0.35 6260 220 6440 530 0.03  

99 (micrite) 37.80 0.33 6200 400 950 600 0.07  

100 (micrite) 36.01 1.50 2600 300 4740 770 0.85  

105 (micrite) 37.21 0.77 3260 310 5080 570 0.09  

106 (micrite) 36.01 1.40 2950 180 6350 730 0.06  

25B (micrite) 36.77 0.45 4710 290 5770 830 0.06  

32 B (micrite) 36.24 0.41 1260 160 2620 1140 0.13  

33 B (micrite) 36.12 0.53 3360 170 5660 1060 0.05  

36 (micrite) 37.58 1.32 5030 130 7940 1070 0.03  

43 B (micrite) 37.99 1.11 3020 130 6180 700 0.04  

11 (cement) 39.13 0.88 3770 220 8090 590 0.08  

1B (cement) 36.40 0.59 13010 230 7630 880 0.02  

33 (cement) 37.50 0.60 1.326 410 8200 8700 0.74  

49 (cement) 36.01 0.49 11380 270 7380 770 0.024  

73 (cement) 38.19 0.36 2940 240 9890 610 0.08  

81 (cement) 38.39 0.58 12140 240 5410 450 0.01  

26 (brachiopod) 38.74 1.002 20000 340 8660 880 0.01  

30 (brachiopod) 37.66 0.33 4290 450 7470 910 0.10  

41 (brachiopod) 38.81 2.42 10170 140 8360 710 0.01  

45 (brachiopod) 36.05 0.28 9250 400 6180 470 0.04  

54 (brachiopod) 38.43 1.12 5970 320 8120 880 0.08  

73 (brachiopod) 36.53 0.23 8770 450 5870 450 0.04  

8B-A (brachiopod) 38.99 0.57 16760 290 4350 530 0.02  

112 (brachiopod 38.45 0.94 4760 270 5660 600 0.06  

119 (brachiopod) 36.19 0.54 5030 280 5000 350 0.07  

          

 
 
 
Table 3 
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