1,473 research outputs found

    Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating

    Get PDF
    Sedentary aging results in a diminished rapid cutaneous vasodilator response to local heating. We investigated whether this diminished response was due to altered contributions of noradrenergic sympathetic nerves; assessing 1) the age-related decline and, 2) the effect of aerobic fitness. We measured skin blood flow (SkBF)(laser-Doppler flowmetry) in young (24±1 yr) and older (64±1 yr) endurance-trained and sedentary men (n=7 per group) at baseline and during 35 min of local skin heating to 42 °C at three forearm sites: 1) untreated; 2) bretylium tosylate (BT), preventing neurotransmitter release from noradrenergic sympathetic nerves; and 3) yohimbine and propranolol (YP), antagonising α- and β-adrenergic receptors. SkBF was converted to cutaneous vascular conductance (CVC) (SkBF/mean arterial pressure) and normalized to maximal CVC (%CVCmax) achieved by skin heating to 44 °C. Pharmacological agents were administered using microdialysis. In the young trained, the rapid vasodilator response was reduced at the BT and YP sites (P0.05) but treatment with BT did (P>0.05). Neither BT nor YP treatments affected the rapid vasodilator response in the older sedentary group (P>0.05). These data suggest that the age-related reduction in the rapid vasodilator response is due to an impairment of sympathetic-dependent mechanisms, which can be partly attenuated with habitual aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in young trained men, and non-adrenergic sympathetic cotransmitters (e.g., neuropeptide Y) in young sedentary and older trained men, possibly as a compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation appears not to involve the sympathetic system

    Anharmonic molecular mechanics: Ab initio based Morse parameterisations for the popular MM3 force field

    Get PDF
    Methodologies for creating reactive potential energy surfaces from molecular mechanics force-fields are becoming increasingly popular. To date, molecular mechanics force-fields use harmonic expressions to treat bonding stretches, which is a poor approximation in reactive molecular dynamics simulations since bonds are displaced significantly from their equilibrium positions. For such applications there is need for a better treatment of anharmonicity. In this contribution Morse bonding potentials have been extensively parameterised for the atom types in the MM3 force field of Allinger and co-workers using high level CCSD(T)(F12*) energies. To our knowledge this is the first instance of a large-scale paramerization of Morse potentials in a popular force field

    Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    Get PDF
    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. Here, we introduce the concept of an "eigenstate witness" and through it provide a new quantum approach which combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled-unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32-bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with minor typos corrected.

    Optimization of Turbine Rim Seals

    Get PDF
    Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process

    MGST1, a GSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation.

    Get PDF
    We show for the first time that, in contrast to other glutathione transferases and peroxidases, deletion of microsomal glutathione transferase 1 (MGST1) in mice is embryonic lethal. To elucidate why, we used zebrafish development as a model system and found that knockdown of MGST1 produced impaired hematopoiesis. We show that MGST1 is expressed early during zebrafish development and plays an important role in hematopoiesis. High expression of MGST1 was detected in regions of active hematopoiesis and co-expressed with markers for hematopoietic stem cells. Further, morpholino-mediated knock-down of MGST1 led to a significant reduction of differentiated hematopoietic cells both from the myeloid and the lymphoid lineages. In fact, hemoglobin was virtually absent in the knock-down fish as revealed by diaminofluorene staining. The impact of MGST1 on hematopoiesis was also shown in hematopoietic stem/progenitor cells (HSPC) isolated from mice, where it was expressed at high levels. Upon promoting HSPC differentiation, lentiviral shRNA MGST1 knockdown significantly reduced differentiated, dedicated cells of the hematopoietic system. Further, MGST1 knockdown resulted in a significant lowering of mitochondrial metabolism and an induction of glycolytic enzymes, energetic states closely coupled to HSPC dynamics. Thus, the non-selenium, glutathione dependent redox regulatory enzyme MGST1 is crucial for embryonic development and for hematopoiesis in vertebrates

    Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE)

    Get PDF
    BACKGROUND: The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray) and compared it with regular microarray. RESULTS: When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. CONCLUSION: ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray

    The SISO CSPI PDG standard for commercial off-the-shelf simulation package interoperability reference models

    Get PDF
    For many years discrete-event simulation has been used to analyze production and logistics problems in manufactur-ing and defense. Commercial-off-the-shelf Simulation Packages (CSPs), visual interactive modelling environ-ments such as Arena, Anylogic, Flexsim, Simul8, Witness, etc., support the development, experimentation and visua-lization of simulation models. There have been various attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture (HLA). These are complex and it is quite difficult to assess how a set of models/CSP are actually interoperating. As the first in a series of standards aimed at standardizing how the HLA is used to support CSP distributed simula-tions, the Simulation Interoperability Standards Organiza-tion’s (SISO) CSP Interoperability Product Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM) that are in-tended to clearly identify the interoperability capabilities of CSP distributed simulations

    SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis

    Get PDF
    The transcription factor SOX9 is important in maintaining the chondrocyte phenotype. To identify novel genes regulated by SOX9 we investigated changes in gene expression by microarray analysis following retroviral transduction with SOX9 of a human chondrocytic cell line (SW1353). From the results the expression of a group of genes (SRPX, S100A1, APOD, RGC32, CRTL1, MYBPH, CRLF1 and SPINT1) was evaluated further in human articular chondrocytes (HACs). First, the same genes were investigated in primary cultures of HACs following SOX9 transduction, and four were found to be similarly regulated (SRPX, APOD, CRTL1 and S100A1). Second, during dedifferentiation of HACs by passage in monolayer cell culture, during which the expression of SOX9 progressively decreased, four of the genes (S100A1, RGC32, CRTL1 and SPINT1) also decreased in their expression. Third, in samples of osteoarthritic (OA) cartilage, which had decreased SOX9 expression compared with age-matched controls, there was decreased expression of SRPX, APOD, RGC32, CRTL1 and SPINT1. The results showed that a group of genes identified as being upregulated by SOX9 in the initial SW1353 screen were also regulated in expression in healthy and OA cartilage. Other genes initially identified were differently expressed in isolated OA chondrocytes and their expression was unrelated to changes in SOX9. The results thus identified some genes whose expression appeared to be linked to SOX9 expression in isolated chondrocytes and were also altered during cartilage degeneration in osteoarthritis

    Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression

    Get PDF
    Solution of the time-dependent Schro ̈dinger equation using a linear combination of basis functions, such as Gaussian wavepackets (GWPs), requires costly evaluation of integrals over the entire potential energy surface (PES) of the system. The standard approach, motivated by computational tractability for direct dynamics, is to approx- imate the PES with a second order Taylor expansion, for example centred at each GWP. In this Article, we propose an alternative method for approximating PES ma- trix elements based on PES interpolation using Gaussian process regression (GPR). Our GPR scheme requires only single-point evaluations of the PES at a limited num- ber of configurations in each time-step; the necessity of performing often-expensive evaluations of the Hessian matrix is completely avoided. In applications to 2-, 5- and 10-dimensional benchmark models describing a tunnelling coordinate coupled non-linearly to a set of harmonic oscillators, we find that our GPR method results in PES matrix elements for which the average error is, in the best case, two orders-of- magnitude smaller and, in the worst case, directly comparable to that determined by any other Taylor expansion method, without requiring additional PES evaluations or Hessian matrices. Given the computational simplicity of GPR, as well as the op- portunities for further refinement of the procedure highlighted herein, we argue that our GPR methodology should replace methods for evaluating PES matrix elements using Taylor expansions in quantum dynamics simulations

    High-intensity interval exercise training before abdominal aortic aneurysm repair ( HIT-AAA): protocol for a randomised controlled feasibility trial

    Get PDF
    Introduction In patients with large abdominal aortic aneurysm (AAA), open surgical or endovascular aneurysm repair procedures are often used to minimise the risk of aneurysm-related rupture and death; however, aneurysm repair itself carries a high risk. Low cardiopulmonary fitness is associated with an increased risk of early post-operative complications and death following elective AAA repair. Therefore, fitness should be enhanced before aneurysm repair. High-intensity interval exercise training (HIT) is a potent, time-efficient strategy for enhancing cardiopulmonary fitness. Here, we describe a feasibility study for a definitive trial of a pre-operative HIT intervention to improve post-operative outcomes in patients undergoing elective AAA repair. Methods and analysis A minimum of 50 patients awaiting elective repair of a 5.5–7.0 cm infrarenal AAA will be allocated by minimisation to HIT or usual care control in a 1:1 ratio. The patients allocated to HIT will complete three hospital-based exercise sessions per week, for 4 weeks. Each session will include 2 or 4 min of high-intensity stationary cycling followed by the same duration of easy cycling or passive recovery, repeated until a total of 16 min of high-intensity exercise is accumulated. Outcomes to be assessed before randomisation and 24–48 h before aneurysm repair include cardiopulmonary fitness, maximum AAA diameter and health-related quality of life. In the post-operative period, we will record destination (ward or critical care unit), organ-specific morbidity, mortality and the durations of critical care and hospital stay. Twelve weeks after the discharge, participants will be interviewed to reassess quality of life and determine post-discharge healthcare utilisation. The costs associated with the exercise intervention and healthcare utilisation will be calculated. Ethics and dissemination Ethics approval was secured through Sunderland Research Ethics Committee. The findings of the trial will be disseminated through peer-reviewed journals, and national and international presentations
    corecore