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Solution of the time-dependent Schrödinger equation using a linear combination of basis functions,
such as Gaussian wavepackets (GWPs), requires costly evaluation of integrals over the entire potential
energy surface (PES) of the system. The standard approach, motivated by computational tractability
for direct dynamics, is to approximate the PES with a second order Taylor expansion, for example
centred at each GWP. In this article, we propose an alternative method for approximating PES matrix
elements based on PES interpolation using Gaussian process regression (GPR). Our GPR scheme
requires only single-point evaluations of the PES at a limited number of configurations in each time-
step; the necessity of performing often-expensive evaluations of the Hessian matrix is completely
avoided. In applications to 2-, 5-, and 10-dimensional benchmark models describing a tunnelling
coordinate coupled non-linearly to a set of harmonic oscillators, we find that our GPR method results
in PES matrix elements for which the average error is, in the best case, two orders-of-magnitude
smaller and, in the worst case, directly comparable to that determined by any other Taylor expansion
method, without requiring additional PES evaluations or Hessian matrices. Given the computational
simplicity of GPR, as well as the opportunities for further refinement of the procedure highlighted
herein, we argue that our GPR methodology should replace methods for evaluating PES matrix
elements using Taylor expansions in quantum dynamics simulations. C 2016 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4964902]

I. INTRODUCTION

Computer simulation approaches based on solution
of the time-dependent Schrödinger equation (TDSE) offer
an important route to modelling dynamics in quantum
chemical systems;1,2 for example, quantum simulations of
organic molecules,3–14 inorganic complexes,15 and biological
systems7,9,10,16,17 have all provided insight into relaxation
dynamics following photochemical excitation, while other
studies have highlighted the role of quantum-mechanical
tunnelling or zero-point energy (ZPE) in multidimensional
dynamics.18–32 The power of these simulation approaches is
that they provide a direct view of real-time quantum dynamics
with access to all properties of interest, such as position
expectation values, electronic state populations, and branching
ratios; as a result, direct solution of the TDSE is an important
route to reconciling experimental observations and atomistic
dynamics.

Most commonly, computational methods aimed at solving
the TDSE begin with a linear expansion of the time-dependent
wavefunction ψ(q, t) in a set of basis functions,

ψ(q, t) =
n
i=1

ci(t)φi(q, t), (1)

where ci(t) is a complex expansion coefficient at time t,
φi(q, t) is the ith basis function, n is the total number of

a)Electronic mail: S.Habershon@warwick.ac.uk

basis functions, and q is the set of coordinates describing the
system. In the case where the basis functions are assumed
to be time-independent (i.e. φi(q, t) = φi(q)), application of
the Dirac-Frenkel variational principle2,33 gives the following
equation-of-motion for the expansion coefficients:

ċ = − i
~

Hc, (2)

where c is the vector of expansion coefficients and H is the
Hamiltonian matrix with elements

Hi j = ⟨φi |Ĥ |φ j⟩ = ⟨φi |T̂ + V̂ |φ j⟩. (3)

While this time-independent-basis approach has been
employed extensively, most notably in studying gas-phase
collisional and scattering processes,34–42 application to larger
systems is implicitly limited because the static basis set must,
by definition, span the entire configurational space available
to the system at all times; this leads to the well-known
exponential scaling with dimensionality.

Methods for solving the TDSE with time-dependent
basis functions can circumvent this “curse of dimensionality”,
albeit with the introduction of new computational challenges.
Here, the basis functions are parameterized by a set
of time-dependent variables, and the equations-of-motion
governing the time-evolution of these parameters can be
determined in two different ways: (i) variationally, using the
Dirac-Frenkel variational principle, or (ii) non-variationally,
using approximate evolution equations. Of the former class,

0021-9606/2016/145(17)/174112/12 145, 174112-1 © Author(s) 2016.
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the multiconfigurational time-dependent Hartree (MCTDH)
method is perhaps the most well known;1,4,5,43,44 this strategy
employs fully variational treatment of the time-dependence
of the basis expansion coefficients and the basis functions
themselves, which are described as Hartree products of
low-dimensional basis functions (typically represented using
a discrete variable representation (DVR) or similar1,2,45).
The MCTDH methodology has enjoyed enormous success
in describing photochemical dynamics in small molecules
such as fulvene46 and pyrazine,47 as well as model systems
of condensed-phase environments.48 However, the MCTDH
strategy requires that the potential energy surface (PES)
describing the system must be written as a “sum of products”
for the time-propagation to be computationally tractable;
while strategies have been developed to cast PESs into
the required form,1,49 this prescription restricts the use of
MCTDH in more general “on the fly” schemes for quantum
dynamics which directly couple to ab initio electronic
structure calculations. Building on the success of MCTDH,
the Gaussian-MCDTH (G-MCTDH5) method also employs
the time-dependent variational principle to evolve the basis
functions, although in this case some of the degrees-of-
freedom in each Hartree product basis function are treated
as Gaussian wavepackets (GWPs); taking this development
to its natural conclusion, the variational multiconfigurational
Gaussian (vMCG13,14,50–53) method employs GWP products
for all degrees-of-freedom, again employing variational
propagation to evolve the basis set. The vMCG method is
more generally applicable than MCTDH in “on the fly”
schemes, coupling ab initio electronic structure calculations
and basis propagation, although not without problems; for
example, linear dependence in the GWP basis set, as well as
the growth of the matrix equations required for propagation,
means that convergence with respect to basis set size can be
challenging.

In methods which employ non-variational evolution of
the basis set, the most common approach is to select
computationally tractable equations-of-motion to describe
the evolution of the parameters describing the basis
functions, while using the time-dependent variational principle
to describe the evolution of the associated expansion
coefficients.7–10,12,19,21,31,32,54–60 The resulting equation-of-
motion for the expansion coefficients is

ċ = − i
~

S−1 �H − i~Ṡ
�

c, (4)

where H is defined in Eq. (3), the time-derivative matrix is

Ṡi j =

φi
����
∂φ j

dt


, (5)

and the overlap matrix is

Si j = ⟨φi |φ j⟩. (6)

Because of the non-variational nature of the evolution of the
basis functions, such methods do not, in general, conserve
energy (unless a complete basis is used19); however, norm
conservation for Hermitian Hamiltonian operators is preserved
by Eq. (4). Within this framework, by far the most common
basis functions employed are GWPs, as in vMCG; for an

f -dimensional system, these are typically of the form

φi(q, t) =
f

κ=1

(
2ακ

i

π

)1/4

e−α
κ
i
(q̂κ−qκ

i
(t))2+i pκ

i
(t)(q̂κ−qκ

i
(t)), (7)

where we have adopted atomic units (~ = 1). Here, the GWP
basis function for each degree-of-freedom is parameterized
by a position qκ

i (t) and a momentum pκi (t), as well as
a width parameter ακ

i ; in what follows, we assume for
simplicity that we are dealing with the common case of
“frozen” GWPs, where the width parameters are fixed,61

although we note that the methods discussed throughout
this article are equally applicable in the “thawed” GWP
case.

The popularity of GWP basis functions in non-
variational wavefunction propagation methods originates in
their appealing connection to classical trajectories.2,61,62

In particular, for a single basis function φi(q, t), it is
straightforward to show that the expectation values of position
and momentum for degree-of-freedom κ are simply qκ

i (t)
and pκi (t), respectively; in other words, these parameters
can be viewed as defining a single phase-space point,
just as in classical mechanics. Besides this connection to
classical mechanics, a further important aspect which is
important to note is that GWPs are localised in configuration
space; this feature is relevant to the current work and will
be described further below. Primarily as a result of the
computationally appealing characteristics of GWPs, these
basis functions have formed the foundation of several
approaches to modelling quantum chemical dynamics. For
example, the ab initio multiple spawning (AIMS7–10,54–57)
method has been employed to model photochemical dynamics
in the gas-phase and the condensed-phase, while the coupled
coherent states (CCS31,32,58,60) approach, and the more recent
multiconfigurational Ehrenfest (MCE59) methodology, have
been benchmarked against a range of model problems and
molecular systems. In our own recent work, we have shown
how the common problem of linear dependence in GWP
basis sets can be circumvented using adaptive strategies,19

and we have also proposed a trajectory-guided strategy which
employs classical dynamics to sample relevant regions of
GWP phase-space for subsequent solution of the TDSE.21

Regardless of the quantum simulation approach taken
(variational or non-variational) and the type of basis
function employed (e.g. GWPs or DVRs), all basis-set
based approaches to solving the TDSE have a common
computational bottleneck beyond the explicit treatment
of high-dimensionality, namely the calculation of matrix
elements of the potential energy operator V (q̂). While explicit
analytical calculation of matrix elements of the kinetic
energy operator, T̂ , is generally straightforward (particularly
if using rectilinear coordinate systems), the determination of
potential energy matrix elements is much more challenging.
In particular, the PE matrix element for basis functions φi(q, t)
and φ j(q, t) is given as

Vi j =


dq φ∗i(q, t)V̂φ j(q, t). (8)

The integral is taken over the entire f -dimensional space of
the system of interest; however, unless the PES is available



174112-3 Alborzpour, Tew, and Habershon J. Chem. Phys. 145, 174112 (2016)

in a simple analytical form, exact evaluation of this integral
is generally impossible. This is clearly the case if one is
interested in performing quantum dynamics simulations “on
the fly,” linking evolution of the TDSE to PES evaluation
using ab initio electronic structure calculations.

In the absence of a simple analytical PES, the most
common approach to calculating matrix elements Vi j is to use
a Taylor expansion,13,14,51,52,63 typically taken around either
the position qi(t) of one of the GWPs or the position of the
GWP arising as the product of the two separate GWPs; as
discussed in detail below, this Taylor expansion is typically
truncated at the second-order (Hessian matrix) term or lower.
While this approach is generally well-founded, based on
the locality of GWPs, it is not without its shortcomings.
For example, calculation of the Hessian matrix using ab
initio methods can be computationally expensive, limiting the
appeal of methods based on second-order Taylor expansions.
Furthermore, the implicit assumption of the second-order
Taylor expansion, that the PES is well-characterized as a
harmonic expansion around a single configuration, can clearly
be limited in accuracy, depending on the characteristics of
the underlying PES. Finally, in the case where expansion
around the position of the product GWP is employed, we
note that this can require O(n2) evaluations of the PES
(and possibly the derivative and Hessian matrix, depending
upon the order of Taylor expansion) to evaluate the full PE
matrix; however, the total number of PES evaluations can
be reduced by integral pre-screening based on the magnitude
of the overlap Si j between GWPs. In any case, it is clear
that the range of applicability of the Taylor expansion
approach, as well as its ultimate accuracy (as demonstrated
below), can be limited; in this article, we propose an
alternative.

In this work, we explore a new approach to calculating PE
matrix elements in quantum dynamics simulations; while our
approach is presented in the context of GWP-based strategies,
we emphasize that it is generally applicable to any quantum
dynamics method in which the basis functions are written
as a Hartree product (an almost universal assumption). In
particular, we propose using Gaussian process regression
(GPR64–71) to calculate PES matrix elements, using only
single-point calculations performed along the trajectories
qi(t) of time-dependent basis functions. In Section II, we
first describe current approaches to calculating PES matrix
elements, with a specific emphasis on simulations using GWP
basis functions; we then describe our proposed GPR-based
approach to approximating PES matrix elements for GWP
basis sets. In Section III, we investigate the accuracy of
different matrix element approximations for benchmark 2-,
5-, and 10-dimensional problems. Our results demonstrate
convincingly that GPR should be employed as the method-
of-choice in evaluating PES matrix elements in GWP-based
quantum dynamics simulations; in particular, our GPR-based
method only requires single-point PES evaluations at each
GWP basis function, is generally more accurate than Taylor
expansion methodologies, and does not require the (usually
expensive) calculation of the Hessian matrix. Overall, GPR
is therefore expected to find use in further development of
“on-the-fly” quantum dynamics strategies.

II. THEORY

Before introducing our GPR methodology for evaluating
PES matrix elements, we set the context for this development
by first describing the most common methods employed
in previous studies. We emphasize here that our interest is
particularly in quantum dynamics methods based on GWP
basis sets; furthermore, we will also outline the advantages
and disadvantages of the PES matrix element calculation
methods described below in the context of prospects for
combining these methods with ab initio electronic structure
methods in “on-the-fly” propagation schemes.

As an aside, we note that the focus of this proof-of-concept
article is on assessing the viability of GPR in calculating PES
matrix elements. As a result, we focus on modelling quantum
dynamics in benchmark systems for which an analytical
PES is available, such that we can compare approximated Vi j

elements to their exact counterparts. Furthermore, we focus on
modelling systems with a single ground-state PES; prospects
for extension to non-adiabatic PESs are discussed later and
will be left for future development.

A. Taylor expansion methods

A well-known and widely exploited property of Gaussian
basis functions is the fact that a product of two Gaussian
functions is itself also a Gaussian function. In the case of
GWPs, using the definition of Eq. (7), the product of two
GWPs (with one taken as the complex conjugate, following
Eq. (8)) is

φ∗i(q)φ j(q)

=

f
κ=1

(4ακ
iα

κ
j

π2

)1/4

× e−α
κ
i
+ακ

j
(q̂κ−q̄κ)2+i(pκ

j
−pκ

i
)q̂κ+i pκ

i
qκ
i
−i pκ

j
qκ
j
−ακ

i
(qκ

i
)2−ακ

j
(qκ

j
)2
,

(9)

which is a complex Gaussian function centered at

q̄κ =
ακ
iq

κ
i + α

κ
jq

κ
j

ακ
i + α

κ
j

. (10)

In the case of frozen GWPs with equal widths, as commonly
employed in a number of GWP-based strategies, the product
centre q̄κ simply becomes the mean value of the coordinates
of the two constituent GWPs.

The fact that the GWP products in Eq. (8) are localised
around q̄ = (q̄1, q̄2, . . . , q̄ f ) suggests that we can make progress
in approximating PES matrix elements using a Taylor
expansion around q̄, such that

V (q) ≃ V (q̄) +
f

κ=1

(q̂κ − q̄κ) ∂V
∂qκ

+
1
2

f
κ, µ=1

(q̂κ − q̄κ) ∂2V
∂qκ∂qµ

(q̂µ − q̄µ) , (11)

where the derivatives and the Hessian matrix are evaluated at
q̄. Substituting this expression into Eq. (8), we have
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Vi j = ⟨φi |V̂ |φ j⟩

≃ V (q̄)Si j +
f

κ=1

�⟨qκ⟩i j − q̄κSi j
� ∂V
∂qκ

+
1
2

f
κ, µ=1

⟨qκqµ⟩i j − q̄κ⟨qµ⟩i j − q̄µ⟨qκ⟩i j + q̄κq̄µSi j


× ∂2V
∂qκ∂qµ

, (12)

where

⟨qκ⟩i j = ⟨φi |q̂κ |φ j⟩ (13)

and

⟨qκqµ⟩i j = ⟨φi |q̂κq̂µ |φ j⟩, (14)

which can both be evaluated analytically for GWP basis
functions. The Taylor expansion form of Eq. (12) can of
course be truncated at a lower order than the quadratic term,
leading to a series of methods for approximating the matrix
elements Vi j. For example, truncating at the zero-order terms
gives

Vi j ≃ V (q̄)Si j, (15)

which is the “saddle point” approximation commonly
employed in the AIMS simulation strategy. For brevity
in later discussion, we refer to Eq. (15) as the MT0
approximation (mid-point Taylor expansion to zero order),
Eq. (12) is the MT2 approximation, and it follows that the
MT1 approximation is defined as

Vi j ≃ V (q̄)Si j +
f

κ=1

�⟨qκ⟩i j − q̄κSi j
� ∂V
∂qκ

. (16)

Application of the MT0-2 approximations requires calculation
of the potential energy and, possibly, the first- and second-
derivatives at the mid-point coordinate of each pair of GWPs;
as a result, this requires at most n + n(n − 1)/2 PES evaluations
to evaluate the full PE matrix for n GWP basis functions.
However, this value can be reduced by further exploiting the
locality of GWPs; in particular, if |Si j | ≤ ϵ , where ϵ is a small
cutoff parameter, then it can be assumed that the GWPs are
sufficiently well-separated that the corresponding PE matrix
elements are zero. If ab initio electronic structure calculations
are to be employed in calculating V (q), this pre-screening
procedure can clearly reduce the total number of PES
evaluations and reduce computational cost.63 Furthermore,
there is clearly a progression in computational expense as
one moves from MT0 to MT2; in particular, calculation of
the Hessian is often an expensive operation within ab initio
electronic structure methods.

An alternative to the mid-point Taylor expansion approach
described above is to instead consider Taylor expansion around
one of the GWP basis functions associated with the matrix
element Vi j; this approach has found extensive use within
G-MCTDH and vMCG calculations. Shifting the centre of the
Taylor expansion to qi(t), and again truncating at second-order
at most leads to three further Vi j approximation methods,

Vi j ≃ V (qi)Si j, (17)

Vi j ≃ V (qi)Si j +
f

κ=1

�⟨qκ⟩i j − qκ
i Si j

� ∂V
∂qκ

i

, (18)

Vi j ≃ V (qi)Si j +
f

κ=1

�⟨qκ⟩i j − qκ
i Si j

� ∂V
∂qκ

i

+
1
2

f
κ, µ=1

⟨qκqµ⟩i j − q̄κ⟨qµ⟩i j − qµ
i ⟨qκ⟩i j + qκ

i q̄µSi j


× ∂2V
∂qκ

i ∂qµ
i

. (19)

We refer to Eqs. (17)-(19) as, respectively, the GT0, GT1, and
GT2 approximations (i.e. Gaussian-based Taylor expansion
to zero-, first-, and second-order). In passing, we note that,
because the Taylor expansion in GT0-2 is taken around a GWP
in the current basis set rather than at a mid-point as in MT0-2,
the total number of PES evaluations (including possibly first-
and second-order derivatives) is n; as a result, evaluation
of a full PE matrix using GT0-2 should be computationally
cheaper than MT0-2, although both sets of methods may
require the (potentially costly) calculation of the Hessian
matrix. Furthermore, it is clear that one could equally perform
the Taylor expansion around either qi(t) or q j(t); in what
follows, we adopt the standard procedure of averaging the
PES matrix element Vi j over both expansions, noting that this
does not require any additional PES evaluations.

B. Shepard interpolation

An approach to evaluating PES matrix elements which
spans the Taylor expansion method above and the GPR
methodology below is Shepard interpolation.52,72–75 Here,
the PES is approximated as a linear combination of Taylor
expansion terms,

V (q) ≃
M
i=1

ci(q)Ti(q). (20)

The sum of Eq. (20) is taken over a set of M configurations
{qi} at which second-order Taylor expansions Ti(q) have been
determined; we note that Ti(q) has exactly the same form as
given previously in Eq. (11). The coefficient ci associated with
each Taylor expansion is typically chosen to be of the form

ci(q) = |q − qi |−pM
k=1 |q − qk |−p

, (21)

where p is an even integer (typically 4). Overall, Eq. (20)
provides a linear interpolation between different regions of
configuration space in which different Taylor expansions are
known; the expansion coefficients of Eq. (21) allow one to
generate a smooth continuous PES approximation which is
straightforward to calculate once a set of Taylor expansions is
known. The reference configurations about which the Taylor
expansions are taken can be chosen in several ways, for
example, by sampling along classical MD trajectories or
in quantum dynamics simulations. Furthermore, within the
Shepard interpolation scheme it is possible to “grow” a PES
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by continuously adding new data points as new regions of
configuration space are sampled.76,77

However, the Shepard interpolation method embodied
in Eqs. (20) and (21) has two important drawbacks which
have curtailed its use as a general strategy for calculating
PES matrix elements in quantum dynamics simulations. First,
construction of the PES of Eq. (20) requires calculation of
the Hessian at each of the expansion points (or at least
at one initial point if Hessian update schemes are used53);
as noted already, this calculation can be computationally
expensive if using ab initio electronic structure calculations
to describe the PES. Second, the weighting functions of
Eq. (21) are themselves functions of configuration space,
such that analytical integration of the Shepard PES over
basis functions in quantum dynamics simulations is generally
non-trivial. Indeed, most likely as a result of this second point,
a previous application of Shepard interpolation within the
setting of quantum dynamics simulations actually employed
Taylor expansion of the interpolated PES of Eq. (20)
around the GWP centres,52 rather than direct evaluation;
in other words, although Shepard interpolation has been
used to generate an interpolated PES, evaluation of PES
matrix elements in quantum dynamics calculations using
Shepard interpolation has still relied on the Taylor expansion
methodology outlined above. As a result, and because of
our interest in developing a computationally efficient scheme
which circumvents calculation of the Hessian, we do not
consider Shepard interpolation further in this work.

C. A new approach: Gaussian process regression

We are now in a position to describe the GPR
approach employed in this work. GPR, often referred to
as kriging,64,66–68 is broadly representative of a class of
machine-learning algorithms for regression of complex hyper-
surfaces based on limited input data. For example, recent
work has employed Gaussian process methods65 to achieve
machine-learning of accurate PESs describing both atom
and molecular chemical systems; the resulting Gaussian
approximation potential (GAP69–71) or kriging method64,66–68

offers a route to performing molecular simulations on PESs
which approximate ab initio electronic structure, albeit at a
much lower computational cost. Moving away from PES
interpolation, machine learning methods such as kernel
ridge regression, Bayesian inference, and artificial neural
networks, have found application in relating ab initio
atomization energies to simple molecular descriptors such
as atomic partial charges,78 in learning optimized exchange-
correlation functionals for density functional theory (DFT)
calculations,79,80 and in learning accurate interatomic PESs
for large-scale molecular simulations.81 Within the same field
of chemical dynamics, a particular interest of the present work,
machine-learning in the form of a support vector machine has
also found application in determination of optimal dividing
surfaces for transition state theory calculations.82

In this work, we present the first exploration of the
use of GPR in the calculation of PES matrix elements for
quantum dynamics simulations. GPR has its origin in Bayesian
inference approaches65 and, in the current context, represents

a strategy for interpolating a PES given the values of the
PES at a set of reference points. Using GPR with a Gaussian
covariance kernel, the interpolated PES is written as a linear
combination of Gaussian terms,

V (q) ≃
M
k=1

wke−γ |q−qk |2. (22)

Here, M is the number of reference GPR configurations, at
which it is assumed that we have calculated the value of the
PES, and γ is a parameter which defines the length-scale
of the Gaussian functions. Given M unknown weights and
M values of the PES, the determination of the weights wk

in the interpolated PES requires solution of M simultaneous
equations; here, we solve

Aw = b, (23)

where A is an M × M covariance matrix with elements

Ai j = e−γ |qi−q j |2 + σ2δi j, (24)

and b is the vector of known PES values at the reference
configurations,

bi = V (qi). (25)

In this work, Eq. (23) is solved using a standard LU-
decomposition method, as implemented in the LAPACK
library.83 The parameter σ can be viewed as an estimate of
the error within the calculated PES values; in the case of the
analytical PESs considered here, this parameter can be effec-
tively viewed as a regularisation parameter which stabilises the
solution of Eq. (23). Furthermore, we treat the parameters σ
and γ as simple variables which are chosen at the outset of our
quantum dynamics simulations; as an alternative, one could, of
course, optimize these parameters by minimizing the predic-
tion error in a test-set of configurations, as discussed later.

We note that, in Eq. (22), we use the Euclidean distance
in coordinate space as the measure of the distance between
points q and qk. More generally, this choice is not expected to
be optimal; for example, in the context of quantum dynamics
simulations, the frequently encountered coupling between
multiple degrees-of-freedom in rectilinear coordinates, such as
Cartesian or normal mode space, suggests that a better choice
of coordinates for describing the PES should aim to employ
degrees-of-freedom which decouple motion amongst different
coordinates.18,84 For example, recent work has highlighted
the use of local molecular descriptors in GAP simulations
of silicon and water,69–71 while a range of dimensionality-
reduction algorithms might be equally employed to derive
appropriate (generally non-linear) coordinates.85,86 Given the
success of the GPR approach demonstrated below, a line
for future research will clearly be developing methods
for optimising coordinate representations; simple Cartesian
coordinates suffice for this proof-of-concept study.

Application of GPR in the context of GWP-based
quantum dynamics simulations follows straightforwardly
from Eq. (22). In particular, we assume here that our GWP
basis set is time-dependent and that, at each time-step, we
calculate the value of the PES at the positions qi(t) of the GWP
centres; these data will act as our M reference points (Eq. (22))
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from which we will construct our GPR interpolation surface.
Once the weights have been determined using Eq. (23), the
PE matrix elements can be evaluated using the GPR surface,

Vi j =


dq φ∗i(q, t)V̂φ j(q, t),

=

M
k=1

wi


dq φ∗i(q, t)e−γ |q−qk |2φ j(q, t),

=

M
k=1

wi

f
κ=1


dqκ(φκi (qκ, t))∗e−γ(qκ−qκ

k
)2(φκj(qκ, t)),

=

M
k=1

wi

f
κ=1

Iκk , (26)

where we have exploited the fact that both the GWPs and
the Gaussian terms of Eq. (22) are a simple product of
one-dimensional terms, one for each of the f degrees-of-
freedom. The one-dimensional Gaussian integral for GPR
reference point k and degree-of-freedom κ, namely Iκ

k
can be

determined analytically, giving

Iκk = N
(
π

a

)1/2
e
(b+ic)2

4a +(d+ie), (27)

where the coefficients are

a = ακ
i + α

κ
j + γ,

b= 2ακ
iq

κ
i + 2ακ

jq
κ
j + 2γqκ

k,

c = pκj − pκi ,

d = −ακ
i (qκ

i )2 − ακ
j(qκ

j )2 − γ(qκ
k)2,

e = pκi q
κ
i − pκjq

κ
j ,

N =
(

2ακ
i

π

)1/4(2ακ
j

π

)1/4

.

(28)

Overall, once the GPR weights have been determined, the
entire PE matrix can be evaluated analytically using the
GPR approximation of Eq. (22); this evaluation is a simple
sum-of-product terms which are straightforward to evaluate.

The method described above employs PES evaluations
at the GWP positions at each time-step, constructs the GPR
weights, and then uses Eqs. (22), (26), and (27) to evaluate
the full PE matrix, as required for evolution in Eqs. (2)
or (4). However, we note here that this is the simplest possible
implementation of GPR that one could imagine in the context
of GWP-based quantum dynamics simulations; in particular, at
least two further refinements are possible within this scheme.
First, there is clearly an opportunity to recycle previous PES
evaluations within the GPR scheme. Specifically, the sum over
reference configurations in Eq. (22) is not restricted to run
over the n GWPs in the basis set at any given time; instead,
one can easily construct a database of configurations and the
corresponding PES value which can be reused in the evolution
of the PE matrix elements. In this way, one can “grow” a
GPR interpolation during the course of a quantum dynamics
simulation, a strategy that has been previously explored in the
context of Shepard interpolation.76,77 Furthermore, we note
the statistical basis of GPR allows evaluation of an error
estimate for the interpolated PES at any new configuration;65

as a result, as GWPs evolve according to either variational

or non-variational equations-of-motion, one can assess how
accurate the GPR interpolation is at a point qi(t) and use
this information to assess whether or not additional ab initio
calculations are required. As a second refinement of the basic
GPR strategy outlined here, we note that the determination of
the GPR weights (Eq. (23)) can be modified to include forces
as target values, rather than just PES values. Importantly,
beyond that associated with solving a larger matrix equation,
this strategy will typically not require significant additional
expense with regards to PES calculations; in particular, if non-
variational GWP evolution strategies are employed, such as
classical trajectories, the forces at each GWP centre qi(t) will
already be available. Overall, both of these strategies might
be expected to further improve the GPR results although, as
we show below, our basic strategy is already impressively
accurate.

Finally, before considering the performance of GPR
as a tool for calculating PE matrix elements, it is worth
highlighting the relative merits of this approach compared to
the Taylor-expansion-based methods described above. First,
GPR does not require calculation of the Hessian matrix,
as is often required in the second-order Taylor expansion
methods commonly employed in GWP simulations. Second,
as described above, GPR uses input (PES values and,
possibly, forces) which is already routinely calculated in GWP
evolution, particularly if classical equations-of-motion are
employed to propagate GWPs; in other words, no additional
PES evaluations are required to evaluate the full PE matrix, in
contrast to the MT0-2 methods described above. Third, GPR
does not make any implicit assumption about the local shape
of the PES, beyond the assumption that the PES is a smoothly
varying function of the chosen coordinates; for example,
the GT2 and MT2 methods implicitly assume that the PES
can be expressed using, at most, quadratic terms. Fourth, as
highlighted above, the GPR methodology can be adapted such
that PES reference points are drawn from a stored database
of configurations which “grows” during the simulation; while
the same approach is true of the Shepard interpolation method,
we again note that direct evaluation of PE matrix elements
with Shepard interpolation is not as straightforward as in
the case of GPR. Finally, and perhaps most importantly for
the more widespread adoption of GPR, we note that this
strategy is straightforward to implement in any scheme in
which the time-dependent wavefunction is expressed using
Hartree product basis functions; such basis functions are
almost universally employed, most notably in the MCTDH
methodology.

Overall, therefore, GPR clearly possesses many desirable
properties with regards to automated construction of PESs
appropriate for quantum dynamics simulations. The only
remaining question is its accuracy relative to strategies
currently in use; we now turn to addressing this question.

III. APPLICATION, RESULTS, AND DISCUSSION

The main focus of this paper is on assessing the accuracy
of the GPR approach relative to other common methods for
PE matrix element evaluation. To aid in this assessment,
we focus exclusively on modelling quantum dynamics in
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systems for which an analytical PES is available, such that the
corresponding PE matrix elements can be exactly evaluated
for our GWP basis functions. As a result, we can assess the
accuracy of the different PE matrix approximation methods
by comparing individual elements Vi j to the exact results.
This comparison can, in principle, use any set of GWP basis
functions; for example, one can imagine randomly placing
GWP basis functions and then comparing both the analytical
and approximated PE matrix elements. However, the danger
of this approach is that one might sample GWP basis function
positions which are not representative of positions sampled
in a typical quantum propagation. For example, in the worst
case, sampling GWP positions which are far apart (according
to, say, a Euclidean distance) may lead to many of the off-
diagonal elements of the PE matrix to simply be close to zero
in both the analytical and approximated PE elements; this
“false positive” effect would lead to an overestimation of the
accuracy of the different approximation methods (although we
also consider this point further below in order to address the
possible influence of the GWP propagation on the predictive
accuracy of GPR).

Instead, we choose to use classical molecular dynamics
(MD) trajectories to propagate a GWP basis set, with initial
conditions sampled according to the properties of the initial
wavefunction; this approach has been employed extensively
in, for example, the AIMS approach, as well as in our
own recent work. Specifically, in all of the calculations
reported below, the initial wavefunction for propagation is
assumed to itself be a GWP, ψ(0) = φI(q); initial conditions
for the n GWP basis set trajectories are subsequently
generated by Wigner sampling from φI(q) and the entire
basis set is then propagated using standard classical MD.
Along this trajectory, we periodically calculate the PE matrix
elements Vi j which would be required for the full quantum
evolution of the complex expansion coefficients according
to Eqs. (2) or (4). These PE matrix elements are calculated
analytically, as well as using the MT0-2, GT0-2, and GPR
approximations; the accuracy of each approach can then be
directly evaluated along the trajectory as the root-mean-square
error (RMSE) between the exact and approximated PE matrix
elements.

The model chosen for this study is a double-well coupled
to a set of harmonic oscillators; the PES is

V (q) = 1
16η

q4
1 −

1
2

q2
1 +

f
k=2


1
2

q2
k + bq1q2

k


, (29)

where b = 0.05 and η = 1.3544. This model has been studied
previously by several quantum dynamics methods, including
CCS60 and MP/SOFT.22 Notably, this is a challenging PES
to model due to the coupling between the harmonic degrees-
of-freedom and the tunnelling coordinate associated with the
double-well; this coupling means that the effective potential
energy along the tunnelling coordinate is asymmetric and, as
a result, requires accurate evolution of a large GWP basis set
to obtain converged results. Furthermore, we note that this
potential exhibits anharmonicity in all degrees-of-freedom,
and is therefore more generally representative of typical
molecular systems than a simple harmonic model. For the

purposes of this article, Eq. (29) is an ideal test case; PE
matrix elements can be analytically evaluated, yet this model
is complex enough to be representative of “typical” quantum
dynamics problems, in this case relating to tunnelling.

As the first test of the proposed GPR method, we consider
the two-dimensional version of Eq. (29) ( f = 2). Here,
n = 200 GWP basis functions were propagated classically,
with initial positions and momenta sampled from the Wigner
distribution of the initial wavepacket. The initial GWP was
positioned at qk = 0 for all degrees-of-freedom k, except
q1 = −2.5; the momenta were pk = 0 for all degrees-of-
freedom. The GWP basis functions were propagated with
a time-step of ∆t = 10−3 a.u. for a total time T = 10 a.u.

Figure 1 shows the time-dependence of the root-mean
square error (RMSE) determined between the different PES
matrix element approximations (GT0-2, MT0-2, and GPR)
and the PES matrix elements evaluated analytically at each
time; in these calculations, we used γ = 0.1 as the GPR width
parameter and σ2 = 10−8. At each time-point, we evaluate

RMSE =


1
n2

n
i, j=1


Re(V c

i j) − Re(V an
i j )2

+

Im(V c

i j) − Im(V an
i j )2



1/2

, (30)

where V c
i j and V an

i j are, respectively, the PES matrix elements
evaluated using the calculation methods discussed herein, and
the analytical matrix elements; furthermore, we note that we
explicitly compare both real and imaginary parts of the matrix
elements.

The results of Fig. 1 unequivocally demonstrate that
our GPR approach for evaluating PES matrix elements is
immediately more accurate than any of the alternative methods
tested. Compared to both GT0-2 (Fig. 1 upper panel) and

FIG. 1. Root-mean-square error (RMSE; Eq. (30)) between exact and ap-
proximate PES matrix elements calculated during propagation of n = 200
GWPs on the f = 2-dimensional PES of Eq. (29). The upper panel compares
the performance of GPR to the GT0-2 Taylor expansion methods, while
the lower panel illustrates the comparison against MT0-2. In each case, the
lines illustrate the average over five independent simulations starting with
different random initial sets of GWP basis functions; the shading illustrates
the minimum and maximum variation amongst these five calculations at each
time-step. Note the logarithmic scale on the y-axis.
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MT0-2 (Fig. 1 lower panel), we find that the GPR approach is
at least an order-of-magnitude more accurate in reproducing
the PES matrix elements without requiring calculation of
the Hessian matrix at any point and only using PES
evaluations at the n GWP positions at each time-step (without
recycling previous PES data). Furthermore, this performance
is maintained throughout the course of the calculation; there
is no point at which any alternative method is more accurate.

However, we note that one potential disadvantage of
the GPR method is the choice of width parameter γ; the
simulation results of Fig. 1 were obtained using γ = 0.1.
The effect of γ on the accuracy with which the analytical
PES matrix elements are reproduced is illustrated in Fig. 2.
Encouragingly, we find that the overall accuracy of the GPR
approach is relatively insensitive to the exact value of γ for
this 2-D model; for 0.02 ≤ γ ≤ 0.4, the average error in the
PES matrix elements is always much lower than the next best
performing approximation methods, as shown by comparing
the results of Fig. 2 to Fig. 1. Further increase to γ ≥ 0.5 then
leads to much larger variation in the PES matrix elements,
presumably because the interpolation of the PES between
GWPs becomes inaccurate beyond the typical radius of each
individual GWP. The results of Fig. 2 clearly demonstrate that
there is a window of reasonable values of γ; however, we
also note that further refinements of the choice of γ could
rely on the fact that an error estimate of the GPR accuracy at
an arbitrary configuration is readily calculable.65 As a result,
γ could be selected by minimizing the PES approximation
error at a set of test configurations; this adaptive scheme for
modifying γ will be explored in our future applications of this
GPR methodology.

At this point, we stop to consider a further question
relating to the results of Fig. 1: is it possible that the
scheme by which we are generating GWP positions and
momenta, namely by Wigner sampling from the initial
wavefunction then using classical trajectories, is biasing our
results? There is a simple route to assessing the potential
impact of the imposed correlation in our GWP basis set,
namely to completely remove the role of initial sampling
and subsequent dynamics by generating independent sets

FIG. 2. Variation of the root-mean-square error (RMSE; Eq. (30)) between
exact and GPR PES matrix elements as a function of the GPR width parameter
γ. Note that the error bars are comparable to the symbol size.

of GWP positions and momenta which are uniformly and
randomly distributed throughout phase-space. Here, instead
of time-evolution of the basis set, we randomly re-sample
the positions and momenta of all GWPs at every time-step
before calculating the GPR approximation to the PES matrix
elements; specifically, positions and momenta were generated
such that qk ∈ [−3,+3] and pk ∈ [−0.5,+0.5] for each degree-
of-freedom k. The comparison between the trajectory-based
GWP sampling and the randomly generated GWP basis set is
shown in Fig. 3. We note that, in this case, we illustrate the
fractional error in the PES matrix elements, defined as

FE =


1
n2

n
i, j=1



Re(V c
i j) − Re(V an

i j )
Re(V an

i j )


2

+ (1 − δi j)


Im(V c
i j) − Im(V an

i j )
Im(V an

i j )


2

1/2

, (31)

and we also note that the imaginary contribution is excluded in
the case of diagonal elements i = j because these components
are implicitly zero for the standard configurational PES of
Eq. (29). The reason for considering the fractional error is that
the average magnitudes of the PES matrix elements generated
in the random and trajectory-based sampling methods are
different; in particular, we find that the off-diagonal matrix
elements generated by the random sampling approach are
much smaller in magnitude than those generated by the
trajectory-based method. As such, the absolute RMSEs
calculated for the various approximation methods using
Eq. (30) are generally lower for the randomly sampled basis
sets, preventing direct comparison of the two basis generation
methods; considering the fractional values scale the errors to
account for this artificial discrepancy.

Figure 3 clearly demonstrates that the significant
improvement of the GPR approach over the Taylor expansion

FIG. 3. Fractional error (FE; Eq. (31)) between exact and approximate PES
matrix elements calculated for n = 200 GWPs on the f = 2-dimensional PES
of Eq. (29). For both the GPR and GT0 approximation methods, results
are shown for both classically propagated GWPs (sampled from the Wigner
distribution of the initial wavepacket) and randomly sampled GWPs, as
described in the text. In each case, the lines illustrate the average over five
independent simulations starting with different random initial sets of GWP
basis functions; the shading illustrates the minimum and maximum variation
amongst these five calculations at each time-step. Note the logarithmic scale
on the y-axis.
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methods is not related to the basis propagation; the accuracy
is similar whether trajectory-based sampling or random
sampling of GWP basis functions is employed. The same
is found to be true of the GT0-2 and MT0-2 methods;
there is no appreciable difference in the PES matrix element
approximation accuracy between trajectory and randomly
sampled basis sets. These results are highly encouraging,
suggesting that the performance of the GPR methodology is
independent of the chosen propagation method. As a result,
implementation of GPR matrix element evaluation within
the framework of alternative quantum dynamics schemes,
particularly the v-MCG method,14 would be expected to
provide significant computational savings given that GPR
(in its most simple implementation demonstrated here) does
not require any information beyond PES values at a set of
distinct configurations.

A. Role of PES dimensionality

As a further assessment of the GPR approach, we consider
the performance in approximating PES matrix elements
for higher-dimensional models; in particular, we consider
f = 5 and f = 10 in Eq. (29). These represent much more
challenging prospects than the 2-dimensional case considered
above, principally because the volume of configuration space
increases exponentially with the dimension of the system;
this presents a particular challenge to interpolation methods
such as GPR, for which the accuracy of PES approximation
might be expected to decrease due to insufficient coverage
of interpolation points. We also note that, from now on,
we only focus on comparing GPR to those methods which
are most commonly used in GWP-based quantum dynamics
simulations, namely MT0 and GT2.

Figure 4 illustrates the RMSE in the PES matrix elements
for the f = 5 and f = 10 model potentials in Eq. (29); these

FIG. 4. Root-mean-square error (RMSE; Eq. (30)) between exact and ap-
proximate PES matrix elements calculated during propagation of n = 200
GWPs on the f = 5- and f = 10-dimensional PES of Eq. (29). Both panels
compare the performance of GPR to the MT0 and GT2 Taylor expansion
methods; in each case, the line illustrates the average over five independent
simulations starting with different random initial sets of GWP basis functions
and the shading illustrates the minimum and maximum variation amongst
these five calculations at each time-step.

simulations were performed in exactly the same way as
the 2-dimensional simulations above, except that the GPR
width parameter was chosen as γ = 0.05. In the case of the
5-dimensional model, GPR clearly outperforms the Taylor
expansion methods in reproducing the exact PES matrix
elements; as expected based on the considerably higher
dimensionality of this system, the overall accuracy of the
GPR PES matrix approximation decreases compared to that
of the 2-dimensional model, but is still clearly better than MT0
and GT2. As the dimensionality is increased further to f = 10,
the accuracy of GPR decreases; however, we note that it is
still more accurate than MT0 and comparable in accuracy to
GT2, despite GPR requiring much less input information
about the PES than either of these Taylor expansion
approaches.

For completeness, Fig. 5 illustrates the fractional error
in the same set of simulations as illustrated in Fig. 4. As
noted above, the fractional error better accounts for the fact
that the magnitude of the PES matrix elements changes
with dimensionality, both as a result of implicit changes
in Eq. (29) and as a result of the fact that the PES matrix
becomes increasingly sparse as the dimensionality increases.
However, Fig. 5 illustrates the same trend as Fig. 4; GPR
is generally better than, or at the very least comparable
to, the Taylor expansion methods without requiring either
the Hessian (as in GT2) or additional PES evaluations (as
in MT0). Furthermore, we note that, when one considers
fractional error rather than standard root mean-square error,
the advantage of GT2 over GPR is removed; in other words,
for the higher-dimensional f = 10 model, all three methods
are comparably accurate when scaled by the magnitude of
the PES matrix elements, primarily due to the fact that the
off-diagonal PES matrix elements become much smaller in
magnitude (and therefore challenging to accurately evaluate)
as dimensionality increases.

FIG. 5. Fractional error (FE; Eq. (31)) between exact and approximate PES
matrix elements calculated during propagation of n = 200 GWPs on the
f = 5- and f = 10-dimensional PES of Eq. (29). Both panels compare the
performance of GPR to the MT0 and GT2 Taylor expansion methods; in
each case, the line illustrates the average over five independent simulations
starting with different random initial sets of GWP basis functions and the
shading illustrates the minimum and maximum variation amongst these five
calculations at each time-step.
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FIG. 6. Effect of number of GPR points on root-mean-square error (RMSE;
Eq. (30)) between exact and approximate PES matrix elements calculated
during propagation of (a) n = 200 GWPs and (b) n = 400 GWPS on the
f = 5-dimensional PES of Eq. (29). In each case, the line illustrates the
average over five independent simulations starting with different random
initial sets of GWP basis functions; the shading illustrates the minimum and
maximum variation amongst these five calculations at each time-step.

As a final point, Fig. 6 illustrates the impact of increasing
the number of GWPs in the simulations of the f = 5 model.
Given that we are using the positions of the GWP basis
functions at each time-step as the reference points for our
GPR approximation to the PES, one would expect that the
accuracy of GPR would increase as the number of reference
data points increase; as shown in Fig. 6, this is exactly the
case. This result is very promising for the future application
of GPR in quantum dynamics simulations; in particular, the
result of Fig. 6 demonstrates that a scheme in which a database
of GPR reference points is constructed during the course of
the quantum dynamics simulations would be expected to
further improve the accuracy of the GPR approximation. In
passing, we note that such a scheme, comparable to the
“grow” methodology employed previously using Shepard
interpolation,76,77 is already under development and will be
reported shortly.

Overall, our results demonstrate that GPR enables
accurate evaluation of PES matrix elements; in the worst case,
the performance of GPR is comparable to commonly used
Taylor expansion methods, but we emphasize that GPR does
not require any additional information beyond PES evaluations
at the centres of the M GWP basis functions, whereas
the Taylor expansion methods require either additional PES
evaluations to evaluate off-diagonal PES matrix elements (as
in MT0) or evaluation of the Hessian matrix (as in GT2). Given
the computational simplicity of GPR, the fact that it requires
no additional PES evaluations than already required of any
other method, and the fact that there are clear opportunities
for improving the performance of GPR in the near-future,
our results suggest that GPR should become the “weapon-of-
choice” in approximating PES matrix elements.

IV. CONCLUSIONS

In this article, we have shown how GPR can be
used in a very straightforward manner to approximate PES

matrix elements required in GWP-based quantum dynamics
simulations. For the f = 2 and f = 5-dimensional models
considered here, we have shown the error in the GPR PES
matrix element approximation is significantly smaller (by
more than an order-of-magnitude in favourable cases) than
any of the alternative methods based on Taylor expansions;
as dimensionality increases to, say f = 10, the advantage
of GPR decreases somewhat, but the accuracy of the
approximated elements remains comparable to the Taylor
expansion approaches. However, most importantly, in its most
basic form, GPR only requires as input the value of the
PES evaluated at a reference set of configurations which we
chose to be the GWP centres in our scheme; importantly,
GPR does not require evaluation of the Hessian matrix
like the second-order Taylor expansion methods, leading to
significant reductions in computational expense. The one
drawback of the GPR scheme is the fact that the GPR width
parameter γ must be chosen; however, given the fact that it
is straightforward to evaluate the GPR approximation error
at any set of test configurations, one can easily implement a
scheme in which γ is adaptively optimized to minimize this
prediction error during the course of the calculation; we are
currently developing this approach.

With regards to computation time, we note that the
evaluation of the GPR weights at each time-step scales as
M3, as expected from direct solution of Eq. (23); for very
large M , it is clearly possible that this step can become quite
time-consuming. However, it is important to bear in mind that
our ambition for this scheme is to couple it directly to “on the
fly” evaluation of the PES using ab initio electronic structure
calculations; in this situation, one might reasonably expect the
evaluation of the PES itself to become the bottleneck, rather
than solution of Eq. (23), as long as M is not excessively large.
Furthermore, as noted above, there is scope for improving the
basic GPR methodology investigated here; in particular, we
note that the number and identity of the reference points
incorporated into the approximate GPR PES can be treated in
an adaptive manner, such that only “local” reference points
are used to evaluate the requisite weights for the given
PES matrix elements. With such strategies, as well as the
other improvements mentioned throughout this manuscript,
we expect that GPR might find application in any quantum
dynamics simulation method demanding evaluation of PES
matrix elements.

Importantly, despite the significant improvement over
Taylor expansion methods, we emphasize that the GPR results
presented here represent the most basic implementation of this
scheme. In particular, we currently discard all previous PES
evaluations and generate a new GPR approximation at each
time-step. This is clearly wasteful; instead, it is clear that
GPR could be easily combined with a database of stored
configurations and their respective PES values in a scheme
reminiscent of the “grow” methodology. Furthermore, we
note that, although we implicitly evaluate the forces acting
on the centre of each GWP in our classical propagation
scheme, we do not use this derivative information in the
GPR approximation; again, expanding GPR to incorporate
this additional information when generating the GPR weights
would be quite straightforward. Both of these developments
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would be expected to further improve the already-impressive
performance of GPR. Finally, as well as these developments,
the remaining challenge to employing GPR in the context
of quantum dynamics relates to the treatment of excited
states. The GPR scheme would be most straightforward to
apply within a framework of diabatic electronic states, rather
than the adiabatic states directly available from ab initio
electronic structure calculations. As a result, we are currently
investigating the combination of GPR with diabatization
schemes which are suited to direct quantum dynamics
methods.87

Given the improved performance of GPR, as well as its
lower computational cost compared to second-order Taylor
expansion methods in particular, our results suggest that,
beyond the (relatively minor) problem of choosing the value
of the GPR parameters, there is little reason to continue to use
Taylor expansion methods to evaluate PES matrix elements
for GWP-based quantum dynamics methods.

ACKNOWLEDGMENTS

The authors are grateful to the Centre for Scientific
Computing for providing high-performance computing
facilities. D.P.T. thanks the Royal Society for a University
Research Fellowship. Data from Figs. 1–6 can be found at
http://wrap.warwick.ac.uk/82278.

1Multidimensional Quantum Dynamics: MCTDH Theory and Applications,
edited by H.-D. Meyer, F. Gatti, and G. A. Worth (Wiley, Weinheim,
Germany, 2009).

2D. J. Tannor, Introduction to Quantum Mechanics: A Time-dependent
Perspective (University Science Books, Sausalito, CA, USA, 2007).

3X. Chen and V. S. Batista, J. Chem. Phys. 125, 124313 (2006).
4I. Burghardt, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 111, 2927
(1999).

5I. Burghardt, K. Giri, and G. A. Worth, J. Chem. Phys. 129, 174104 (2008).
6R. D. Coalson and M. Karplus, J. Chem. Phys. 93, 3919 (1990).
7M. Ben-Nun, J. Quenneville, and T. J. Martínez, J. Phys. Chem. A 104, 5161
(2000).

8M. Ben-Nun and T. J. Martinez, Adv. Chem. Phys. 121, 439 (2002).
9B. G. Levine and T. J. Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007).

10A. M. Virshup, C. Punwong, T. V. Pogorelov, B. A. Lindquist, C. Ko, and
T. J. Martínez, J. Phys. Chem. B 113, 3280 (2009).

11S. K. Reed, D. R. Glowacki, and D. V. Shalashilin, Chem. Phys. 370, 223
(2010).

12D. V. Shalashilin, J. Chem. Phys. 132, 244111 (2010).
13G. A. Worth, M. A. Robb, and B. Lasorne, Mol. Phys. 106, 2077 (2008).
14D. Mendive-Tapia, B. Lasorne, G. A. Worth, M. A. Robb, and M. J. Bearpark,

J. Chem. Phys. 137, 22A548 (2012).
15R. G. Mckinlay, J. M. Zurek, and M. J. Paterson, in Theoretical and

Computational Inorganic Chemistry, edited by R. van Eldik and J.
Harvey, Advances in Inorganic Chemistry (Academic Press, 2010), Vol. 62,
pp. 351–390.

16L. A. Baker, M. D. Horbury, S. E. Greenough, F. Allais, P. S. Walsh, S.
Habershon, and V. G. Stavros, J. Phys. Chem. Lett. 7, 56 (2016).

17L. A. Baker and S. Habershon, J. Chem. Phys. 143, 105101 (2015).
18S. Habershon, J. Chem. Phys. 136, 054109 (2012).
19S. Habershon, J. Chem. Phys. 136, 014109 (2012).
20S. Habershon, J. Chem. Phys. 139, 104107 (2013).
21M. A. C. Saller and S. Habershon, J. Chem. Theory Comput. 11, 8 (2015).
22Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004).
23J. M. Bowman, J. Chem. Phys. 68, 608 (1978).
24J. M. Bowman, K. M. Christoffel, and F. Tobin, J. Phys. Chem. 83, 905

(1979).
25K. M. Christoffel and J. M. Bowman, Chem. Phys. Lett. 85, 220 (1982).
26S. Adhikari and G. D. Billing, Chem. Phys. Lett. 309, 249 (1999).
27B. Hartke, Phys. Chem. Chem. Phys. 8, 3627 (2006).
28I. S. S. S. Iyengar and J. Jakowski, J. Phys. Chem. B 112, 7601 (2008).

29Z. Kotler, E. Neria, and A. Nitzan, Comput. Phys. Commun. 63, 243 (1991).
30P. P. Schmidt, Mol. Phys. 105, 1217 (2010).
31P. A. Sherratt, D. V. Shalashillin, and M. S. Child, Chem. Phys. 322, 127

(2006).
32D. V. Shalashilin and M. S. Child, J. Chem. Phys. 114, 9296 (2001).
33J. Broeckhove, L. Lathouwers, E. Kesteloot, and P. Van Leuven, Chem. Phys.

Lett. 149, 547 (1988).
34G. Kroes and H.-D. Meyer, Chem. Phys. Lett. 440, 334 (2007).
35S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E.

Pomerantz, R. N. Zare, and E. Wrede, Nature 416, 67 (2002).
36E. A. McCullough, Jr. and R. E. Wyatt, J. Chem. Phys. 51, 1253 (1969).
37D. Neuhauser, J. Chem. Phys. 100, 9272 (1994).
38M. Hankel, G. G. Balint-Kurti, and S. K. Gray, J. Chem. Phys. 113, 9658

(2000).
39S. C. Althorpe, J. Chem. Phys. 114, 1601 (2001).
40S. K. Gray and C. E. Wozny, J. Chem. Phys. 94, 2817 (1991).
41W. Hu and G. C. Schatz, J. Chem. Phys. 125, 132301 (2006).
42D. C. Clary, Proc. Natl. Acad. Sci. U. S. A. 105, 12649 (2008).
43H.-D. Meyer, U. Manthe, and L. Cederbaum, Chem. Phys. Lett. 165, 73

(1990).
44M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1

(2000).
45D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
46L. Blancafort, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 135, 134303 (2011).
47A. Raab, G. A. Worth, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys.

110, 936 (1999).
48H. Wang, J. Chem. Phys. 113, 9948 (2000).
49F. Otto, J. Chem. Phys. 140, 014106 (2014).
50G. A. Worth and I. Burghardt, Chem. Phys. Lett. 368, 502 (2003).
51G. A. Worth and M. A. Robb, Adv. Chem. Phys. 124, 355 (2003).
52T. J. Frankcombe, M. A. Collins, and G. A. Worth, Chem. Phys. Lett. 489,

242 (2010).
53G. Richings, I. Polyak, K. Spinlove, G. Worth, I. Burghardt, and B. Lasorne,

Int. Rev. Phys. Chem. 34, 269 (2015).
54T. J. Martinez, Chem. Phys. Lett. 272, 139 (1997).
55M. Ben-Nun and T. J. Martínez, J. Chem. Phys. 108, 7244 (1998).
56K. Thompson and T. J. Martinez, J. Chem. Phys. 110, 1376 (1999).
57M. Ben-Nun and T. J. Martinez, Isr. J. Chem. 47, 75 (2007).
58D. V. Shalashilin and M. S. Child, J. Chem. Phys. 128, 054102 (2008).
59D. V. Shalashilin, J. Chem. Phys. 130, 244101 (2009).
60J. A. Green, A. Grigolo, M. Ronto, and D. V. Shalashilin, J. Chem. Phys.

144, 024111 (2016).
61E. J. Heller, J. Chem. Phys. 75, 2923 (1981).
62E. J. Heller, Acc. Chem. Res. 14, 368 (1981).
63B. G. Levine, J. D. Coe, A. M. Virshup, and T. J. Martínez, Chem. Phys. 347,

3 (2008).
64T. L. Fletcher and P. L. A. Popelier, J. Chem. Theory Comput. 12, 2742

(2016).
65C. E. Rasmussen and C. Williams, Gaussian Processes for Machine

Learning (MIT Press, 2006).
66S. M. Kandathil, T. L. Fletcher, Y. Yuan, J. Knowles, and P. L. A. Popelier,

J. Comput. Chem. 34, 1850 (2013).
67M. J. L. Mills and P. L. A. Popelier, Comput. Theor. Chem. 975, 42 (2011).
68M. J. L. Mills and P. L. A. Popelier, Theor. Chem. Acc. 131, 1 (2012).
69A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi, Phys. Rev. B 88,

054104 (2013).
70A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104,

136403 (2010).
71A. P. Bartók and G. Csányi, Int. J. Quantum Chem. 115, 1051 (2015).
72G. E. Moyano and M. A. Collins, J. Chem. Phys. 121, 9769 (2004).
73T. Takata, T. Taketsugu, K. Hirao, and M. S. Gordon, J. Chem. Phys. 109,

4281 (1998).
74K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108,

564 (1998).
75M. A. Collins, Theor. Chem. Acc. 108, 313 (2002).
76H. M. Netzloff, M. A. Collins, and M. S. Gordon, J. Chem. Phys. 124, 154104

(2006).
77O. Godsi, M. A. Collins, and U. Peskin, J. Chem. Phys. 132, 124106 (2010).
78M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, Phys. Rev.

Lett. 108, 058301 (2012).
79J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and K. Burke, Phys. Rev.

Lett. 108, 253002 (2012).
80M. Aldegunde, J. R. Kermode, and N. Zabaras, J. Comput. Phys. 311, 173

(2016).

http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://wrap.warwick.ac.uk/82278
http://dx.doi.org/10.1063/1.2356477
http://dx.doi.org/10.1063/1.479574
http://dx.doi.org/10.1063/1.2996349
http://dx.doi.org/10.1063/1.458778
http://dx.doi.org/10.1021/jp994174i
http://dx.doi.org/10.1002/0471264318.ch7
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
http://dx.doi.org/10.1021/jp8073464
http://dx.doi.org/10.1016/j.chemphys.2010.02.010
http://dx.doi.org/10.1063/1.3442747
http://dx.doi.org/10.1080/00268970802172503
http://dx.doi.org/10.1063/1.4765087
http://dx.doi.org/10.1021/acs.jpclett.5b02474
http://dx.doi.org/10.1063/1.4930110
http://dx.doi.org/10.1063/1.3681167
http://dx.doi.org/10.1063/1.3671978
http://dx.doi.org/10.1063/1.4819322
http://dx.doi.org/10.1021/ct500657f
http://dx.doi.org/10.1063/1.1766298
http://dx.doi.org/10.1063/1.435782
http://dx.doi.org/10.1021/j100471a005
http://dx.doi.org/10.1016/0009-2614(82)80335-7
http://dx.doi.org/10.1016/S0009-2614(99)00681-8
http://dx.doi.org/10.1039/b606376d
http://dx.doi.org/10.1021/jp7103215
http://dx.doi.org/10.1016/0010-4655(91)90253-H
http://dx.doi.org/10.1080/00268970701311186
http://dx.doi.org/10.1016/j.chemphys.2005.06.050
http://dx.doi.org/10.1063/1.1367392
http://dx.doi.org/10.1016/0009-2614(88)80380-4
http://dx.doi.org/10.1016/0009-2614(88)80380-4
http://dx.doi.org/10.1016/j.cplett.2007.04.047
http://dx.doi.org/10.1038/416067a
http://dx.doi.org/10.1063/1.1672133
http://dx.doi.org/10.1063/1.466681
http://dx.doi.org/10.1063/1.1319996
http://dx.doi.org/10.1063/1.1334866
http://dx.doi.org/10.1063/1.459858
http://dx.doi.org/10.1063/1.2213961
http://dx.doi.org/10.1073/pnas.0800088105
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://dx.doi.org/10.1063/1.462100
http://dx.doi.org/10.1063/1.3643767
http://dx.doi.org/10.1063/1.478061
http://dx.doi.org/10.1063/1.1323746
http://dx.doi.org/10.1063/1.4856135
http://dx.doi.org/10.1016/S0009-2614(02)01920-6
http://dx.doi.org/10.1002/0471433462.ch7
http://dx.doi.org/10.1016/j.cplett.2010.02.068
http://dx.doi.org/10.1080/0144235X.2015.1051354
http://dx.doi.org/10.1016/S0009-2614(97)88000-1
http://dx.doi.org/10.1063/1.476142
http://dx.doi.org/10.1063/1.478027
http://dx.doi.org/10.1560/IJC.47.1.75
http://dx.doi.org/10.1063/1.2828509
http://dx.doi.org/10.1063/1.3153302
http://dx.doi.org/10.1063/1.4939205
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1021/ar00072a002
http://dx.doi.org/10.1016/j.chemphys.2008.01.014
http://dx.doi.org/10.1021/acs.jctc.6b00457
http://dx.doi.org/10.1002/jcc.23333
http://dx.doi.org/10.1016/j.comptc.2011.04.004
http://dx.doi.org/10.1007/s00214-012-1137-7
http://dx.doi.org/10.1103/PhysRevB.88.054104
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1002/qua.24927
http://dx.doi.org/10.1063/1.1809579
http://dx.doi.org/10.1063/1.477032
http://dx.doi.org/10.1063/1.475419
http://dx.doi.org/10.1007/s00214-002-0383-5
http://dx.doi.org/10.1063/1.2185641
http://dx.doi.org/10.1063/1.3364817
http://dx.doi.org/10.1103/PhysRevLett.108.058301
http://dx.doi.org/10.1103/PhysRevLett.108.058301
http://dx.doi.org/10.1103/PhysRevLett.108.253002
http://dx.doi.org/10.1103/PhysRevLett.108.253002
http://dx.doi.org/10.1016/j.jcp.2016.01.034


174112-12 Alborzpour, Tew, and Habershon J. Chem. Phys. 145, 174112 (2016)

81J. Behler, J. Phys.: Condens. Matter 26, 183001 (2014).
82Z. D. Pozun, K. Hansen, D. Sheppard, M. Rupp, K.-R. Müller, and G.

Henkelman, J. Chem. Phys. 136 (2012).
83E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.

Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1999).

84W. Mizukami, S. Habershon, and D. P. Tew, J. Chem. Phys. 141, 144310
(2014).

85A. L. Ferguson, A. Z. Panagiotopoulos, I. G. Kevrekidis, and P. G.
Debenedetti, Chem. Phys. Lett. 509, 1 (2011).

86J. B. Tenenbaum, V. de Silva, and J. C. Langford, Science 290, 2319
(2000).

87G. W. Richings and G. A. Worth, J. Phys. Chem. A 119, 12457 (2015).

http://dx.doi.org/10.1088/0953-8984/26/18/183001
http://dx.doi.org/10.1063/1.4707167
http://dx.doi.org/10.1063/1.4897486
http://dx.doi.org/10.1016/j.cplett.2011.04.066
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1021/acs.jpca.5b07921

