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ABSTRACT 34 

Sedentary aging results in a diminished rapid cutaneous vasodilator response to 35 

local heating. We investigated whether this diminished response was due to altered 36 

contributions of noradrenergic sympathetic nerves; assessing 1) the age-related 37 

decline and, 2) the effect of aerobic fitness. We measured skin blood flow (SkBF) 38 

(laser-Doppler flowmetry) in young (24±1 yr) and older (64±1 yr) endurance-trained 39 

and sedentary men (n=7 per group) at baseline and during 35 min of local skin 40 

heating to 42 °C at three forearm sites: 1) untreated; 2) bretylium tosylate (BT), 41 

preventing neurotransmitter release from noradrenergic sympathetic nerves; and 3) 42 

yohimbine and propranolol (YP), antagonising α- and β-adrenergic receptors. SkBF 43 

was converted to cutaneous vascular conductance (CVC) (SkBF/mean arterial 44 

pressure) and normalized to maximal CVC (%CVCmax) achieved by skin heating to 45 

44 °C. Pharmacological agents were administered using microdialysis. In the young 46 

trained, the rapid vasodilator response was reduced at the BT and YP sites (P<0.05); 47 

by contrast, in the young sedentary and older trained, YP had no effect (P>0.05) but 48 

treatment with BT did (P>0.05). Neither BT nor YP treatments affected the rapid 49 

vasodilator response in the older sedentary group (P>0.05). These data suggest that 50 

the age-related reduction in the rapid vasodilator response is due to an impairment 51 

of sympathetic-dependent mechanisms, which can be partly attenuated with habitual 52 

aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in 53 

young trained men, and non-adrenergic sympathetic cotransmitters (e.g., 54 

neuropeptide Y) in young sedentary and older trained men, possibly as a 55 

compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation 56 

appears not to involve the sympathetic system. 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 
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INTRODUCTION 68 

In humans, the cutaneous circulation performs a major role in the control of body 69 

temperature through the level of its perfusion. Under conditions of heat stress, skin 70 

blood flow (SkBF) can increase to greater than 6 L/min (30). In contrast, during 71 

exposure to extreme cold, SkBF can fall to almost zero (17).  In non-glabrous (hairy) 72 

skin, the SkBF response to thermal stimuli local to the site of measurement appears 73 

to be achieved via a sympathetic noradrenergic system releasing norepinephrine 74 

(NE) and the cotransmitter neuropeptide Y (NPY) and a non-adrenergic system that 75 

is heavily dependent on nitric oxide (NO) (12-13, 15). 76 

 77 

The skin hyperemic response to a non-painful, rapid heat stimulus is commonly used 78 

as a test of microvascular and endothelial function (6, 22) and involves at least two 79 

independent phases: an initial, rapid transitory rise, followed by a nadir, ultimately 80 

succeeded by a secondary rise and prolonged plateau (20, 23). The specific 81 

mechanisms underpinning these phases are complex and not completely understood. 82 

The rapid initial peak of the vasodilator response is thought to be primarily mediated 83 

by an axon reflex via activation of transient receptor potential vanilloid-1 (TRPV-1) 84 

receptors in C-fibre afferent nociceptive neurones (41). These sensory neurones 85 

might increase skin blood flow (SkBF) through the release of neuropeptides such as 86 

calcitonin gene-related peptide and/or substance P (4); however, these theories 87 

have yet to be directly tested. Additionally, NO has been shown to contribute 88 

modestly to the initial peak of the vasodilator response to rapid local heating (20, 23). 89 

The secondary rise and plateau in SkBF, in contrast, is heavily dependent on NO 90 

synthesis as inhibition of NO synthase (NOS) reduces this phase by approximately 91 

70% (20, 23). 92 

 93 

Recent work (12-13, 15) supports the somewhat counterintuitive concept that 94 

cutaneous noradrenergic sympathetic nerves are also involved in the cutaneous 95 

vasodilator response to local heating. Indeed, pre-synaptic blockade of 96 

neurotransmitter release from these nerves with bretylium tosylate (BT) abolishes 97 

the rapid vasodilator (initial) phase and greatly reduces the overall vasodilator 98 

response to slow local heating (+0.1°C·min-1) (13, 15). By performing separate post-99 

synaptic antagonism of α- and β-adrenergic receptors and of Y1 receptors, Hodges 100 

et al. (13) found evidence of roles for both NE and the cotransmitter NPY. Adrenergic 101 
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involvement in thermal hyperemia also has a rate dependency: the initial peak 102 

evoked by slow local heating (+0.1°C·min-1) is completely abolished by pre-treatment 103 

with BT; by contrast, the initial peak evoked by rapid local heating (+2°C·min-1) is 104 

only halved under conditions of sympathetic nerve blockade (12). 105 

 106 

The initial rapid peak and secondary plateau are diminished with sedentary aging (24, 107 

34). Whereas the diminished secondary plateau of older adults is largely explained 108 

by attenuated NO-mediated vasodilation (2, 24), the mechanisms underpinning the 109 

decline in the initial rapid vasodilation are less clear. Diminished functioning of local 110 

sensory nerves might be implicated, because sensory nerve function blockade using 111 

a topical local anesthetic cream abolishes the difference between young adults and 112 

older sedentary adults (33). In that study, the size of the initial peak and the 113 

contribution of sensory nerves to the initial peak were similar between older 114 

endurance-trained adults and younger adults, suggesting that regular aerobic 115 

exercise can preserve sensory nerve-mediated vasodilator function in older adults. 116 

Previous studies have demonstrated that aging is associated with decreases in skin 117 

sympathetic efferent outflow in response to heat exposure (10) and vasoconstrictor 118 

responsiveness to NE (36, 40). Therefore, the diminished initial peak of sedentary 119 

older adults might also involve a decreased contribution of noradrenergic 120 

sympathetic nerves. 121 

 122 

Hence, the primary aim of this study was to investigate the role of cutaneous 123 

noradrenergic sympathetic nerves in the age-related decline in the initial rapid 124 

vasodilator response to local heating. A secondary aim was to further investigate the 125 

effect of regular aerobic exercise (as reflected by a higher aerobic fitness) on the 126 

initial peak in both young and older adults, assessing whether the effects of habitual 127 

exercise on cutaneous vasodilation can be explained by altered contributions of 128 

sympathetic neurotransmitters. We hypothesized that the contribution of 129 

noradrenergic sympathetic nerves to the initial vasodilator response would be 130 

greater in the young and well-trained individuals compared to the older sedentary 131 

individuals. 132 

 133 

 134 

 135 
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MATERIALS AND METHODS 136 

Ethics approval 137 

This study was approved by the Ethics Committee of Sheffield Hallam University and 138 

conducted according to the principles of the Declaration of Helsinki. Written, 139 

informed consent was obtained before participants entered the study. 140 

 141 

Participants 142 

We recruited 28 men who were equally divided among four groups: young 143 

endurance-trained (24 ± 1 yr), young sedentary (25 ± 1 yr), older endurance-trained 144 

(64 ± 1 yr) and older sedentary (64 ± 1 yr). The trained participants were recruited 145 

from running and cycling clubs in and around Sheffield, UK. They had all performed 146 

vigorous endurance exercise for ≥3 times·week-1, ≥30 min·session-1 and ≥5 years. 147 

The sedentary participants reported undertaking no regular exercise. All participants 148 

were healthy, non-smokers, free from cardiovascular disease and diabetes, and 149 

were not taking any medications. The participants attended the testing facility on two 150 

separate occasions. For both sessions, they were asked to refrain from caffeine, 151 

alcohol, and exercise for 24 h prior to their attendance. The participants are the 152 

same as those described in a recently published article by our group (33). 153 

 154 

Visit 1: Assessment of cardiopulmonary fitness 155 

Participants completed a continuous, incremental cycling test to volitional exhaustion 156 

on an electronically-braked cycle ergometer (Excalibur Sport, Lode, The 157 

Netherlands). Pedalling frequency was self-selected within the range of 60 to 90 158 

rev·min-1. After a 2-min warm-up against no resistance (0 W), the intensity of 159 

exercise was increased by 20 to 30 W·min-1. Participants were encouraged to 160 

continue cycling to volitional exhaustion or until a plateau in oxygen consumption 161 

was observed. Heart rate was recorded continuously by electrocardiogram 162 

(Cardioperfect, Welch Allyn, USA). The volume of oxygen consumed during exercise 163 

was calculated from minute ventilation, measured using a pneumotach, and 164 

simultaneous breath-by-breath analysis of expired gas fractions (Ultima CardiO2, 165 

MedGraphics, USA). Gas analysers and flow probes were calibrated before each 166 

test. Oxygen consumption was expressed relative to body mass (mL·kg-1·min-1). 167 

Maximal oxygen consumption (V O2max) was calculated as the highest consecutive 168 
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20-second period of gas exchange data in the last minute before volitional 169 

exhaustion, which generally occurred due to leg fatigue and/or breathlessness. 170 

 171 

Visit 2: Assessment of SkBF responses to local heating 172 

Instrumentation 173 

The microvascular assessments were performed in a temperature-controlled room 174 

(22 to 24°C) with participants resting supine and the experimental (left) arm 175 

positioned at heart level for the entire protocol. Blood pressure was measured 176 

automatically on the right arm every 2 min (Dinamap Dash 2500, GE Healthcare, 177 

USA).  178 

 179 

Two microdialysis fibers (Linear 30, CMA Microdialysis Ltd, Stockholm, Sweden) 180 

with a membrane length of 10 mm and a 6-kDa molecular mass cut-off were placed 181 

~5 cm apart in the dermal layer of skin on the ventral aspect of the left forearm. 182 

Before implantation, the skin was temporarily anesthetised by applying an ice pack 183 

for 5 min (11). A 21-gauge needle was introduced aseptically into the dermis along a 184 

length of ~2.5 cm before exiting. A microdialysis fiber was threaded through the 185 

lumen of the needle, before removing the needle to leave the fiber in place. All 186 

microdialysis fibers were placed in this manner. To allow for the effects of the 187 

insertion trauma to subside, we waited 1.5-2 h before beginning the protocol (13).  188 

 189 

To obtain an index of SkBF, cutaneous red blood cell flux was measured using laser 190 

Doppler flowmetry (Periflux 5000 System, Perimed AB, Järfälla, Sweden) at the two 191 

microdialysis sites, and at a third "no fiber" control site. Local heater discs (Model 192 

455, Perimed AB) were used to control local skin temperature and integrating laser 193 

Doppler probes (Model 413, Perimed AB) were placed in the centre of each local 194 

heating disc.  195 

 196 

Drugs 197 

Blockade of neurotransmitter release from sympathetic adrenergic nerves was 198 

achieved at one of the microdialysis sites by administering a 20 mM solution of BT 199 

(US Pharmacopeia, Rockville, MD, USA). Administration of BT causes a selective 200 

and localised blockade of neurotransmitter release from cutaneous sympathetic 201 

adrenergic nerves lasting several hours (19). 202 
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 203 

Blockade of the α- and β-adrenergic receptors was achieved by administering a 204 

combination of 5 mM yohimbine (Sigma Aldrich, St. Louis, MO, US) and 1 mM 205 

propranolol (Sigma Aldrich) to antagonise those receptors. Herein, these skin sites 206 

will be termed the YP sites. Yohimbine is traditionally regarded as an α2-adrenergic 207 

antagonist; however, this combination and concentration of adrenergic antagonists 208 

has previously been shown to be effective in inhibiting the cutaneous vascular 209 

responses to exogenous NE (18, 31), suggesting that all α- and β-adrenergic 210 

receptors are blocked. 211 

 212 

As for previous studies investigating the role of sympathetic-dependent mechanisms 213 

in cutaneous vasodilation, all drugs were infused at a rate of 4 μL·min-1 (12-13). 214 

 215 

Protocol 216 

Data collection began after the trauma resolution period. Baseline data were 217 

recorded for 5 min with the local heating disc temperature at 33 °C. The temperature 218 

of the discs was then increased at a rate of 1 °C every 10 s to 42 °C (34) and held 219 

constant at this temperature for 35 min (32). After this, local heating temperature was 220 

increased to 44 °C for 10 min to induce maximal SkBF (37). No participants 221 

experienced any pain or discomfort during the local heating protocol. 222 

 223 

Data collection and analysis 224 

SkBF data were divided by mean arterial pressure to calculate cutaneous vascular 225 

conductance (CVC). CVC data were expressed as raw values (au/mmHg) and as a 226 

percentage of maximal vasodilation recorded during local heating to 44 °C 227 

(%CVCmax). Because of the rapid and transient nature of the initial peak responses, 228 

stable 30-s periods of SkBF were used for analysis. For the secondary plateau and 229 

maximal SkBF phases, stable 2-min periods of SkBF were used for analysis.  230 

 231 

To assess the contribution of sympathetic adrenergic nerves to the initial peak in 232 

each group, we compared the SkBF responses between the control and drug sites. 233 

For example, similar responses between all three sites would suggest that NE and 234 

NPY do not contribute to the initial peak. If the initial peak is equally depressed at the 235 

BT and YP sites, this would indicate that NE contributes to the initial peak, whereas 236 
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NPY does not. Finally, if the initial peak is depressed at the BT site, but not the YP 237 

site, this would indicate that NPY contributes to the initial peak, whereas NE does 238 

not. 239 

 240 

Participant characteristics were compared among groups using a one-way 241 

independent ANOVA (SAS v9.1, SAS Institute, Cary, NC). The effects of age, 242 

training status, and pharmacological manipulations on hemodynamic measures 243 

were assessed using a three-way ANOVA. Where significant interaction effects were 244 

observed, Tukey's post hoc analyses were used to identify significant differences in 245 

the pairwise comparisons. Statistical significance was set at P<0.05 and all data are 246 

presented as means ± S.E.M. 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 
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RESULTS 271 

Participant characteristics 272 

The characteristics of the participants have been reported previously (33). Briefly, 273 

the groups did not differ in body mass, stature, or resting systolic or diastolic blood 274 

pressure (P>0.05). All participants were normotensive and achieved V O2max 275 

according to standard criteria (16). The V O2max of the young trained (58 ± 3 mL·kg-276 
1·min-1) was higher (P<0.05) than that of the young sedentary (40 ± 2 mL·kg-1·min-1), 277 

older trained (44 ± 2 mL·kg-1·min-1), and older sedentary (28 ± 2 mL·kg-1·min-1). The 278 

V O2max of the older sedentary was lower than that of all other groups (P<0.05), and 279 

there was no difference between the young sedentary and older trained (P>0.05).  280 

 281 

CVC responses 282 

Local heating resulted in the characteristic biphasic SkBF response previously 283 

described (23), i.e., an initial rapid increase and peak at the onset of heating, a brief 284 

nadir, and then a slower rise and plateau. This pattern was seen in all four groups 285 

and at all skin sites. 286 

 287 

Normalized baseline 288 

Baseline CVC did not differ among groups at each skin site (P>0.05). For example, 289 

control-site baseline CVC for the young trained, young sedentary, older trained and 290 

older sedentary was 7 ± 1, 8 ± 1, 7 ± 1, and 8 ± 1 %CVCmax, respectively (P>0.05). 291 

Furthermore, baseline CVC did not differ among skin sites within any of the groups 292 

(P>0.05) (e.g. young sedentary control site: 8 ± 1, BT site: 9 ± 1, and YP site: 9 ± 293 

1 %CVCmax), indicating no effect of pharmacological treatment. 294 

 295 

Normalized initial peak 296 

Figure 1 shows the normalized initial peak data for all groups at the control, BT, and 297 

YP sites. At the control site, the initial peak of the young trained and older trained (82 298 

± 3 and 79 ± 3 %CVCmax, respectively) was higher (P<0.05) than that of the young 299 

sedentary and older sedentary (74 ± 3 and 66 ± 5 %CVCmax, respectively). The 300 

initial peak of the older sedentary was also lower than that of the young sedentary 301 

(P<0.05), and there was no difference between the young trained and older trained 302 

(P>0.05). The difference in the initial peak between trained and sedentary groups 303 
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was more pronounced in the older men compared to the young men (19 ± 4 vs. 11 ± 304 

2 %, respectively; P<0.05). 305 

 306 

The initial peak at the BT site was lower (P<0.05) than that at the control site in all 307 

groups except the older sedentary (control minus BT: young trained 10 ± 3, young 308 

sedentary 7 ± 2, older trained 9 ± 2, older sedentary 2 ± 1 %CVCmax) (Fig. 1). In 309 

addition, the initial peak at the BT site did not differ between the young trained, 310 

young sedentary, and older trained (P>0.05), whereas the responses of the older 311 

sedentary were lower than those of the young trained and older trained (P<0.05). 312 

 313 

In the young trained, the initial peak at the YP site was lower than that at the control 314 

site (control minus YP: 11 ± 3 %CVCmax; P<0.05); however, the initial peak was 315 

similar between the BT and YP sites (72 ± 6 and 72 ± 4 %CVCmax, respectively; 316 

P>0.05), suggesting that NE contributes to the initial peak in young trained adults, 317 

whereas NPY does not (Fig. 1). In the young sedentary and older trained, the initial 318 

peak at the YP site (75 ± 2 and 77 ± 3 %CVCmax, respectively) did not differ 319 

(P>0.05) to that at the control site (74 ± 3 and 79 ± 4 %CVCmax, respectively). 320 

Considering the reduced vasodilator response under conditions of BT but not YP in 321 

these groups, this suggests a role for NPY, but not NE, in the initial peak of these 322 

groups. As with BT treatment, YP did not effect the initial peak in the older sedentary 323 

(control minus YP: 0 ± 1 %CVCmax; P>0.05). 324 

 325 

Normalized plateau 326 

Figure 2 shows the normalized plateau data for all groups at the control, BT, and YP 327 

sites. The plateau at the control site did not differ among groups (P>0.05). The 328 

plateau at the BT site was lower (P<0.05) than that at the control site for the young 329 

trained (71 ± 1 vs. 91 ± 2 %CVCmax, respectively) and older trained (85 ± 3 vs. 93 ± 330 

2 %CVCmax, respectively). In contrast, the plateau was similar (P>0.05) between BT 331 

and control sites in the young sedentary (85 ± 5 vs. 90 ± 3 %CVCmax, respectively) 332 

and older sedentary (91 ± 3 vs. 94 ± 1 %CVCmax, respectively). The plateau at the 333 

YP site in the young trained and older trained (90 ± 2 and 92 ± 3 %CVCmax, 334 

respectively) did not differ to that at the control site (P>0.05). In these groups, BT but 335 

not YP reduced vasodilatation; this suggests a role for NPY, but not NE, in the 336 

plateau of these groups. As with BT treatment, YP did not affect (P>0.05) the plateau 337 
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in the young sedentary and older sedentary (88 ± 2 and 91 ± 2 %CVCmax, 338 

respectively). 339 

 340 

Raw CVC responses 341 

The findings for the raw (non-normalized) data (Table 1) are similar to those for the 342 

normalized data. There was no effect of group or treatment on baseline responses 343 

(P>0.05). The control-site initial peak was higher in the young trained compared to all 344 

other groups (P<0.05), whereas the response of the older sedentary was lower than 345 

all other groups (P<0.05). There was no difference between the young sedentary 346 

and older trained (P>0.05). The control-site plateau was higher in the young trained 347 

compared to all other groups (P<0.05), and there were no differences among the 348 

remaining three groups (P>0.05). Treatment with BT and YP reduced the initial peak 349 

and plateau in the young trained only (P<0.05), and these phases did not differ 350 

between groups at the BT and YP sites (P>0.05). Finally, in the young trained, the 351 

initial peak did not differ between BT and YP sites (P>0.05), whereas the plateau 352 

was lower at the BT site compared to the YP site (P<0.05). 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 
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DISCUSSION 372 

The main novel findings from this study are: i) the age-related decline in the rapid 373 

skin hyperemic response to localized heating is partially explained by a diminished 374 

contribution of noradrenergic sympathetic nerves; ii) the contribution of 375 

noradrenergic sympathetic nerves to the initial peak is greater in individuals who 376 

have a higher aerobic fitness; and, iii) the sympathetic neurotransmitters contributing 377 

to the initial peak vary between young trained, young sedentary and older trained 378 

adults. Our data suggest that NE contributes to the initial peak of the young trained, 379 

whereas NPY does not. Conversely, NPY seems to play a role in the initial peak of 380 

the young sedentary and older trained, whereas NE does not. In the older sedentary, 381 

there is a significant reduction in the initial peak and no involvement of noradrenergic 382 

sympathetic nerves.   383 

 384 

Effects of aging on the initial peak and potential mechanisms 385 

The observation that the rapid skin hyperemic response to local heating was higher 386 

in both young groups compared to the older sedentary group is consistent with 387 

previous findings (24, 33-34). It has been suggested that a smaller initial peak might 388 

be associated with a greater risk of local tissue damage in response to directly 389 

applied heat (24, 41). This seems logical since a rapid increase in SkBF will 390 

minimize the heat transferred to the underlying tissues; however, further research is 391 

needed to substantiate this suggestion, especially since the initial peak normally 392 

does not usually occur until 3 to 4 min after the initiation of skin heating. In addition, 393 

the age-related decline in the initial peak might be associated with impaired wound 394 

healing. Indeed, the magnitude of the initial peak reflects sensory nerve function 395 

(e.g., (33)), which is known to be an important contributory factor to wound healing 396 

capacity (29). 397 

 398 

Our current findings suggest that the age-related decline is partly due to a 399 

diminished contribution of noradrenergic sympathetic nerves. Indeed, sympathetic 400 

nerve blockade decreased the initial peak in the young, but not the older sedentary, 401 

such that the between-group difference in the initial peak was smaller at the BT site 402 

than that at the control site (Figure 1). This finding may be due to the generalized 403 

decline in skin sympathetic efferent activity that occurs with primary aging (10), 404 

although other factors such as a reduced release and post-junctional binding of 405 
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sympathetic transmitters cannot be excluded. To improve our understanding of this 406 

matter, further research is needed to clarify the mechanisms by which noradrenergic 407 

sympathetic nerves contribute to local heating-induced cutaneous vasodilation. 408 

Previous research suggests that noradrenergic sympathetic nerves may sensitize 409 

the vascular responsiveness to local skin heating, which would affect the initial rise 410 

(axon reflex) in blood flow. Indeed, Houghton et al. (15) reported that low-dose NE 411 

infusion decreased the temperature threshold of the axon reflex response to slow 412 

local heating, and Drummond and Lipnicki (7) observed that iontophoresis of NE 413 

caused an axon reflex response in immediately adjacent skin that was blocked by 414 

pre-treatment with a local anesthetic cream. There might also be an important 415 

interaction between NE and/or NPY and the production of NO via endothelial NOS (1, 416 

5, 38), which would probably contribute more to the plateau phase of the local 417 

heating response; however, this is yet to be directly tested.  418 

 419 

Importantly, the age-related decrement in the initial peak was not completely 420 

abolished by sympathetic nerve blockade, indicating that other factors are involved. 421 

One such factor might be a diminished functioning of heat-sensitive nociceptors, 422 

since sensory nerve function blockade has been shown to abolish the difference in 423 

the initial peak between young adults and older sedentary adults (33). Nitric oxide 424 

might also be implicated given that it contributes modestly to the initial peak (20, 23); 425 

however, a previous study showed that NOS inhibition did not abolish the difference 426 

in the initial peak between young and older adults (24). Nevertheless, NO might be 427 

involved via potential interactions with sensory nerves (41) and/or noradrenergic 428 

sympathetic nerves (13). Further research is needed to understand how 429 

noradrenergic sympathetic nerves, sensory nerves, and NO interact in the rapid 430 

vasodilator response to local heating and what their respective roles are in the age-431 

related decline in the initial peak. The current data would suggest that there is a 432 

considerable degree of redundancy among these systems, similar to what is known 433 

with reflex vasodilation in response to increases in core temperature (3).  434 

 435 

Effects of aerobic fitness on the initial peak and potential mechanisms 436 

The age-related decline in the initial peak was not present in the older trained, which 437 

is consistent with our previous findings (33-34) and indicates that participating in 438 

regular aerobic exercise preserves the capacity to rapidly increase SkBF in response 439 
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to skin heating into advanced age. Exercise training also appears to be associated 440 

with a higher initial peak in young adults; however, the impact of exercise training 441 

seems greater in older adults (Figure 1), perhaps because these individuals have 442 

greater potential for improvement relative to their younger counterparts. This is 443 

consistent with what is known about conduit artery and resistance vessel function; 444 

exercise training seems to enhance vascular function to a greater extent in those 445 

with depressed function at baseline (35).  446 

 447 

The difference in SkBF between the control and BT sites was lower in the sedentary 448 

groups, indicating that regular aerobic exercise can also increase the contribution of 449 

noradrenergic sympathetic nerves to the initial peak in both young and older adults. 450 

As for the aging data, the underpinning mechanisms of this finding are unclear. 451 

Nevertheless, the current study provides novel and important data on the effects of 452 

aging and aerobic fitness on local heating-induced cutaneous vasodilation and the 453 

contribution of sympathetic neurotransmitters to this response. Further research is 454 

needed to identify the acute and chronic effects of exercise on cutaneous 455 

neurovascular function, including noradrenergic sympathetic nerve function. 456 

 457 

Group-specific roles of NE and NPY in the initial peak 458 

Our findings also indicate that the sympathetic neurotransmitters contributing to the 459 

initial peak vary between young trained, young sedentary, and older trained adults. 460 

Indeed, NE seemed to play a role in the initial peak of the young trained and NPY did 461 

not. By contrast, NPY and not NE appeared to play a role in the initial peak of the 462 

young sedentary and older trained groups. Neither NE nor NPY appear to be 463 

involved in the relatively diminished initial peak of the older sedentary. Aging and 464 

sedentary behavior lead to an increase in sympathetic outflow and it is under 465 

stressful conditions that NPY appears to play a role in sympathetic function (26, 42). 466 

We propose our data indicate that a role for NPY only occurs as a compensatory 467 

mechanism. NE is the neurotransmitter usually used (young trained), but with a 468 

sedentary lifestyle (young untrained) or primary aging (older trained) it would appear 469 

that NPY is required to compensate for a loss of adrenergic function. Currently, we 470 

are unable to speculate as to whether this is due to pre- or post-synaptic alterations, 471 

i.e. whether these changes are due to alterations in transmitter synthesis and 472 

release or in receptor density or affinity. The combination of a sedentary lifestyle and 473 
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aging appears to result in a complete loss of sympathetic involvement, such that the 474 

initial peak responses under control conditions for the older sedentary group were 475 

somewhat similar to the responses achieved at the BT-treated sites for the other 476 

three groups. Also note the absence of any change following treatment with BT or 477 

YP. 478 

 479 

Effects of age and aerobic fitness on the plateau and maximum CVC 480 

responses and the role of noradrenergic sympathetic nerves 481 

The secondary plateau of the SkBF response to local heating, did not differ between 482 

groups when the data were normalized to maximal CVC (Figure 2), which is in 483 

contrast to some of the previous studies that have investigated the impact of age and 484 

exercise training on local heating-induced SkBF responses (8-9, 14, 21, 24, 27-28, 485 

39), but not all (2, 25). However, this finding might simply reflect our approach of 486 

normalizing data to CVC values recorded during local heating at 44 °C. Although this 487 

method, which is used to account for the wide heterogeneity in capillary density 488 

across the forearm, is acceptable in healthy young adults and in mechanistically-489 

driven, carefully controlled studies (22), it might be inappropriate for comparing data 490 

between young and older adults (24-25), because of the age-associated decline in 491 

the maximal SkBF response to local heating (21). For example, the CVC responses 492 

during the plateau phase were similar between groups when expressed 493 

as %CVCmax, but lower in the older groups compared to the young trained when 494 

expressed as raw CVC (Table 1). Therefore, although participants from all groups 495 

reached a similar %CVCmax, lower maximal CVC values in aged skin would 496 

probably translate to a lower absolute SkBF for a given %CVCmax. Because of this 497 

issue, we chose to present data both as raw CVC and %CVCmax. Reassuringly, the 498 

interpretation of the initial peak data did not change greatly between these different 499 

methods. 500 

 501 

Our findings indicate that the contribution of cutaneous sympathetic nerves to the 502 

plateau phase of heat-induced vasodilation is dependent on the individual's aerobic 503 

fitness. Indeed, sympathetic nerve blockade using BT decreased the plateau in the 504 

young and older trained, but not in the young and older sedentary groups (Figure 2). 505 

Three other studies have demonstrated that cutaneous noradrenergic sympathetic 506 

nerves contribute to the plateau in young healthy adults (12-13, 15). The data of 507 
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these studies are not directly comparable with our own because two of the three 508 

studies used a slow heating protocol (+0.1 °C·min-1) (13, 15), and the fitness/training 509 

status of the participants was unclear throughout. Whereas both NE and NPY 510 

contribute to the plateau response to slow local heating (13, 15), it seems that the 511 

sympathetic-related contribution to rapid local heating (in the trained groups) 512 

involves NPY only. Further research is needed to help understand this difference 513 

and how exercise training alters the contribution of sympathetic neurotransmitters. 514 

 515 

A final curious observation that warrants discussion is that maximal raw CVC in the 516 

young trained group was significantly greater at the control sites compared with the 517 

BT and YP treated sites (Table 1). No differences were observed among the sites in 518 

the other three groups. This may be due to the fact that the BT and YP treated sites 519 

had microdialysis fibers present, while the control site did not; however, as this 520 

scenario did not occur in any of the other groups we feel this is unlikely. What this 521 

might indicate, is that, in young trained adults, either noradrenergic sympathetic 522 

nerves contribute to the maximal CVC response to local heating at 44 °C (similar to 523 

what we have observed for initial peak and plateau phase data) or that local heating 524 

to 44 °C was an insufficient stimulus to elicit a maximal vasodilator response. As we 525 

are unable to definitively state whether or not "true" maximum CVC was obtained at 526 

every skin site in the different groups, inspection of the raw CVC responses (Table 1) 527 

is particularly important in the interpretation of our results. Reassuringly, both 528 

methods of data presentation support our interpretation of the initial peak results. 529 

 530 

Experimental considerations 531 

It might be argued that our assessment of drug effects was clouded by the fact that 532 

we did not have a microdialysis fiber at the control site. Indeed, it has previously 533 

been demonstrated that fiber placement alone decreases the peak reflex cutaneous 534 

vasodilator response to whole body heating (11). However, that study also showed 535 

that this attenuation did not occur if ice was applied for 5 min before fiber placement. 536 

Since we used ice in this manner, any reported between-site differences are 537 

probably due to the action of the drugs and not the absence of a microdialysis fiber 538 

at the control site. Furthermore, our pilot tests (n=5) investigating this issue indicated 539 

that the SkBF response to rapid local heating is not affected by ice treatment + fiber 540 

placement (e.g., normalized initial peak: fiber 71 ± 7 %CVCmax vs. no-fiber 67 ± 541 
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7 %CVCmax; raw maximum: fiber 2.56 ± 0.22 au/mmHg vs. no-fiber 2.36 ± 0.12 542 

au/mmHg; P = 0.13 and P = 0.40, respectively). 543 

 544 

Another potential limitation is that we did not use a NPY-specific antagonist such as 545 

BIBP-3226 to assess the contribution of NPY to the thermal hyperemic response. 546 

Hodges et al. (13) previously assessed the contribution of NE and NPY to the 547 

cutaneous vasodilator response to slow local heating using a 4-site "Latin-square" 548 

design: (i) control, (ii) α- and β-adrenoceptor antagonism, (iii) Y1-receptor 549 

antagonism, and (iv) a combination of (ii) and (iii). We could not use this approach 550 

because we currently only have a 3-channel laser Doppler flowmeter. Nevertheless, 551 

with only 3 sites (control, neurotransmitter block, and α- and β-adrenoceptor 552 

antagonism), we were essentially able to obtain the effects of NE and, indirectly NPY. 553 

 554 

In summary, we present a comparison of cutaneous microvascular responses to 555 

localised heating between young and older endurance-trained and sedentary 556 

individuals, with specific focus on the initial vasodilator response and the contribution 557 

of noradrenergic sympathetic nerves to this phase. At untreated control sites, the 558 

initial vasodilator response to local heating was lower in the older sedentary 559 

compared to both young groups. The lower responses of the older sedentary 560 

appeared to be partly explained by diminished contribution of noradrenergic 561 

sympathetic nerves. Our findings also indicate that the sympathetic contribution to 562 

the initial peak can be preserved into advanced age by maintaining a high level of 563 

aerobic fitness and/or participating in regular aerobic exercise. Finally, the 564 

sympathetic neurotransmitters contributing to the initial peak vary between young 565 

trained, young sedentary and older trained men. Specifically, NE seems to play a 566 

role in the initial peak of young trained men, whereas NPY does not. Conversely, 567 

NPY seems to play a role in the initial peak of young sedentary and older trained 568 

men, whereas NE does not. Finally, in older sedentary men, the rapid vasodilation is 569 

greatly reduced with no involvement of the sympathetic system. 570 
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FIGURE LEGENDS 712 

Fig. 1: Initial vasodilation to local skin heating. Data are means + S.E.M. for each 713 

group and skin site. CT, control sites; BT, bretylium tosylate treated sites; YP, 714 

yohimbine and propranolol treated sites. Symbols indicate P<0.05 as follows: * vs. 715 

control site within group; † vs. young trained; ‡ vs. older trained; § vs. young untrained. 716 

 717 

Fig. 2: Normalized secondary plateau CVC responses to local heating. Data are 718 

means + S.E.M. for each group and skin site. CT, control sites; BT, bretylium tosylate 719 

treated sites; YP, yohimbine and propranolol treated sites. Symbols indicate P<0.05 720 

as follows: * vs. control site within group. 721 
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Table 1. Raw CVC data for each phase of the local heating protocol 

 Young 

trained 

Young 

sedentary 

Older  

trained 

Older 

sedentary 

Baseline  

CT 

BT 

YP 

 

0.23 ± 0.03 

0.19 ± 0.03 

0.24 ± 0.02  

 

0.22 ± 0.02 

0.23 ± 0.03 

0.26 ± 0.02 

 

0.25 ± 0.03 

0.20 ± 0.03 

0.27 ± 0.04 

 

0.20 ± 0.03 

0.25 ± 0.02 

0.26 ± 0.04 

Initial peak  

CT 

BT 

YP 

 

2.66 ± 0.13 

1.70 ± 0.28* 

1.77 ± 0.20*  

 

2.05 ± 0.13† 

2.01 ± 0.22 

1.89 ± 0.13 

 

2.02 ± 0.23† 

1.95 ± 0.34 

2.05 ± 0.25 

 

1.75 ± 0.12†‡§

1.82 ± 0.19 

1.67 ± 0.07 

Plateau  

CT 

BT 

YP 

 

2.95 ± 0.16 

1.77 ± 0.36* 

2.18 ± 0.15*$ 

 

2.48 ± 0.15† 

2.39 ± 0.36† 

2.48 ± 0.22† 

 

2.38 ± 0.25† 

2.35 ± 0.36† 

2.42 ± 0.24† 

 

2.50 ± 0.11† 

2.63 ± 0.32† 

2.46 ± 0.36† 

Maximum 

CT 

BT 

YP 

 

3.27 ± 0.18 

2.42 ± 0.24* 

2.44 ± 0.17* 

 

2.74 ± 0.23† 

2.73 ± 0.26 

2.80 ± 0.22 

 

2.55 ± 0.20† 

2.73 ± 0.28 

2.64 ± 0.24 

 

2.64 ± 0.25† 

2.87 ± 0.27 

2.65 ± 0.36 

Data are expressed as means ± S.E.M. CVC, cutaneous vascular conductance. 
*Different to the corresponding control (CT) site (P<0.05); $Different to the 

corresponding bretylium (BT) site (P<0.05); †Different to the young trained (P<0.05); 
‡Different to the young sedentary (P<0.05); §Different to the older sedentary (P<0.05). 
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