114 research outputs found

    A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from <i>Pinus nigra</i> ssp. <i>laricio</i> (Corsica/France)

    Get PDF
    The Mediterranean is considered as an area which will be affected strongly by current climate change. However, temperature records for the past centuries which can contribute to a better understanding of future climate changes are still sparse for this region. Carbon isotope chronologies from tree-rings often mirror temperature history but their application as climate proxies is difficult due to the influence of the anthropogenic change in atmospheric CO<sub>2</sub> on the carbon isotope fractionation during photosynthetic CO<sub>2</sub> uptake. We tested the influence of different correction models accounting for plant response to increased atmospheric CO<sub>2</sub> on four annually resolved long-term carbon isotope records (between 400 and 800 yr) derived from Corsican pine trees (<i>Pinus nigra</i> ssp. <i>laricio</i>) growing at ecologically varying mountain sites on the island of Corsica. The different correction factors have only a minor influence on the main climate signals and resulting temperature reconstructions. Carbon isotope series show strong correlations with summer temperature and precipitation. A summer temperature reconstruction (1448–2007 AD) reveals that the Little Ice Age was characterised by low, but not extremely low temperatures on Corsica. Temperatures have been to modern temperatures at around 1500 AD. The reconstruction reveals warm summers during 1480–1520 and 1950–2007 AD and cool summers during 1580–1620 and 1820–1890 AD

    Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U-Th)/He thermochronometry: A case study from Corsica (France)

    Get PDF
    The age of high-elevation planation surfaces in Corsica is constrained using new apatite (U-Th)/He data, field observations, and published work (zircon fission track, apatite fission track [AFT] data and landform/stratigraphical analysis). Thermal modeling results based on AFT and (U-Th)/He data, and the Eocene sediments uncomformably overlapping the Variscan crystalline basement indicate that present-day elevated planation surfaces in Corsica are the remnants of an erosion surface formed on the basement between ∼120 and ∼60 Ma. During the Alpine collision in the Paleocene-Eocene, the Variscan crystalline basement was buried beneath a westward-thinning wedge of flysch, and the eastern portion was overridden by the Alpine nappes. Resetting of the apatite fission track thermochronometer suggests an overburden thickness of >4 km covering Variscan Corsica. Protected by soft sediment, the planation surface was preserved. In the latest Oligocene to Miocene times, the surface was re-exposed and offset by reactivated faults, with individual basement blocks differentially uplifted in several phases to elevations of, in some cases, >2 km.Currently the planation surface remnants occur at different altitudes and with variable tilt. This Corsican example demonstrates that under favorable conditions, paleolandforms typical of tectonically inactive areas can survive in tectonically active settings such as at collisional plate margins. The results of some samples also reveal some discrepancies in thermal histories modeled from combined AFT and (U-Th)/He data. In some cases, models could not find a cooling path that fit both data sets, while in other instances, the modeled cooling paths suggest isothermal holding at temperature levels just below the apatite partial annealing zone followed by final late Neogene cooling. This result appears to be an artifact of the modeling algorithm as it is in conflict with independent geological constraints. Caution should be used when cross-validating the AFT and (U-Th)/He systems both in the case extremely old terrains and in the case of rocks with a relatively simple, young cooling history

    Merging cloned alloy models with colorful refactorings

    Get PDF
    Likewise to code, clone-and-own is a common way to create variants of a model, to explore the impact of different features while exploring the design of a software system. Previously, we have introduced Colorful Alloy, an extension of the popular Alloy language and toolkit to support feature-oriented design, where model elements can be annotated with feature expressions and further highlighted with different colors to ease understanding. In this paper we propose a catalog of refactorings for Colorful Alloy models, and show how they can be used to iteratively merge cloned Alloy models into a single feature-annotated colorful model, where the commonalities and differences between the different clones are easily perceived, and more efficient aggregated analyses can be performed.This work is financed by the ERDF — European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia within project PTDC/CCI-INF/29583/2017 – POCI-01-0145-FEDER-029583

    Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation

    Get PDF
    International audienceQuantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ∼0.5 km/Ma since ∼14 Ma. A slightly accelerated rate (∼0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ∼14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ∼0.5 km/Ma paleoexhumation rate

    Shrinking and Splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide

    No full text
    International audienceClimate, and in particular **the spatial pattern of precipitation, is thought to affect* *the topographic and tectonic evolution of mountain belts through erosion. Numerical model simulations of landscape erosion controlled **by horizontal tectonic motion or orographic precipitation result in the asymmetric topography that characterizes most natural mountain belts, and in a continuous migration of the main drainage divide. The effects of such a migration have, however, been challenging to observe in natural settings. Here I document the effects of a lateral precipitation gradient on a landscape undergoing constant uplift in a laboratory modelling experiment. In the experiment, the drainage divide migrates towards the drier, leeward side of the mountain range, causing the drainage basins on the leeward side to shrink and split into* *smaller basins. This mechanism results in a progressively increasing number of drainage basins on the leeward side of the mountain range as the divide migrates, such that the expected relationship between the spacing of drainage basins and the location of the main drainage divide is maintained. I propose that this mechanism could clarify the drainage divide migration and topographic asymmetry found in active orogenic mountain ranges, as exemplified by the Aconquija Range of Argentin

    Continent elevation, mountains, and erosion : freeboard implications

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B05410, doi:10.1029/2008JB006176.To the simplest approximation, Earth's continental crust is a floating aggregate on the planet's surface that is first attracted to subduction zones and, upon arrival, thickened by mountain building (then producing some extension). Thickened regions are thinned again by erosion. A comparison between 65 Ma and the present shows that the modern state is significantly more mountainous. An estimated average continental elevation increase relative to average ocean floor depth of about 54 m and sea level decrease relative to the ocean floor of about 102 m add up to a 156-m increase of continent elevation over sea level since 65 Ma. Both are affected most strongly by the roughly 1.7% continent surface area decrease caused by Cenozoic mountain building. This includes contributions from erosion. Volumes of sediments in deltas and submarine fans indicate an average thickness of 371 m deposited globally in the ocean basins since 65 Ma. This relatively large change of continent area over a short span of Earth history has significant consequences. Extrapolating, if continent area change exceeded 5% in the past, either severe erosion or flooded continents occurred. If continent elevation (freeboard) remains at the present value of a few hundred meters, the past continent-ocean area ratio might have been quite different, depending on earlier volumes of continental crust and water. We conclude that, along with the ages of ocean basins, continental crustal thickening exerts a first-order control on the global sea level over hundreds of million years
    • …
    corecore